




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
北京市平谷區(qū)2024學(xué)年中考數(shù)學(xué)模擬預(yù)測題
注意事項:
1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。
2.答題時請按要求用筆。
3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。
4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。
5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。
一、選擇題(共10小題,每小題3分,共30分)
1.如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形%將半徑為5的“等邊扇形”圍成一個圓錐,則圓錐
的側(cè)面積為()
2525
A.—B.—nC.50I).507r
22
2.一、單選題
如圖:在A43C中,CE平分N4C3,C/平分NACO,且EF//BC交AC于M,若CM=5,則CE?+C產(chǎn)等
C.120D.125
3.如圖,AD//BE//CFt直線A與這三條平行線分別交于點A,B,C和點0,E,P.已知A8=l,BC=3tDE
=2,則E戶的長為()
A.4B..5C.6D.8
4.下列等式正確的是()
A.(a+b)2=a2+b2B.3n+3n+3n=3n+,
C.a3+a5=a6D.(ah)2=ab,
5.對于一組統(tǒng)計數(shù)據(jù):1,6,2,3,3,下列說法錯誤的是()
A.平均數(shù)是3B.中位數(shù)是3C.眾數(shù)是3D.方差是2.5
6.2017年我國大學(xué)生畢業(yè)人數(shù)將達(dá)到7490000人,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為()
A.7.49X107B.74.9x106C.7.49xl06D.0.749xl07
2x-a>0
7.如果關(guān)于x的不等式組二,八的整數(shù)解僅有x=2、x=3,那么適合這個不等式組的整數(shù)。、人組成的有序
數(shù)對(4,方)共有()
A.3個B.4個C.5個D.6個
8.?5的相反數(shù)是()
A.5B.-C.J5D.--
55
9.實數(shù)。在數(shù)軸上的位置如圖所示,則J(a—4)2—J(a—U)2化簡后為()
---------05-^10->
A.7B.-7C.2a-15D.無法確定
10.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個全等
的直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為〃,較短直角邊長為瓦若
(“+與2=21,大正方形的面積為13,則小正方形的面積為()
二、填空題(本大題共6個小題,每小題3分,共18分)
11.反比例函數(shù)),二人的圖象經(jīng)過點(?3,2),則k的值是.當(dāng)x大于0時,y隨x的增大而.(填增大
x
或減?。?/p>
12.在函數(shù)y=g的表達(dá)式中,自變量x的取值范圍是.
13.如果一個扇形的弧長等于它的半徑,那么此扇形成為“等邊扇形”.則半徑為2的“等邊扇形”的面積為
14.關(guān)于x的分式方程三+5=網(wǎng)?有增根,則用的值為_________.
x-1x-\
15.在直角坐標(biāo)系中,坐標(biāo)軸上到點P(?3,-4)的距離等于5的點的坐標(biāo)是—.
16.己知代數(shù)式2x?y的值是:,則代數(shù)式?6x+3y-1的值是.
三、解答題(共8題,共72分)
17.(8分)計算:(-1)20%(-1)-2-|2-V12l+4sin60°;
18.(8分)如圖,水渠邊有一棵大木瓜樹,樹十DO(不計粗細(xì))上有兩個木瓜A、B(不計大?。?,樹十垂直于地面,
量得AB=2米,在水渠的對面與O處于同一水平面的C處測得木瓜A的仰角為45。、木瓜B的仰角為30。.求C處到
樹干DO的距離CO.(結(jié)果精確到1米)(參考數(shù)據(jù):6=1.73,
19.(8分)先化簡,再求值:(2x+y)2+(x—y)(x+y)—5x(x—y),其中x=&+l,y=V2-1.
20.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=?x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點
C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF〃丫軸交拋物線
于點F,連結(jié)DF.設(shè)點P的橫坐標(biāo)為n】.
(1)求比拋物線所對應(yīng)的函數(shù)表達(dá)式.
(2)求PF的長度,用含m的代數(shù)式表示.
(3)當(dāng)四邊形PEDF為平行四邊形時,求m的值.
21.(8分)如圖,點0是線段8。的中點,AB"EC,41=4?求證:AB=EC,
22.(10分)如圖,在平面直角坐標(biāo)系中,四邊形。43c的頂點。是坐標(biāo)原點,點A在第一象限,點C在第四象限,點“在
工軸的正半軸上,/。43=90。且。4=八8,OB=6,OC=5.
⑴求點八和點的坐標(biāo);
(2)點〃是線段09上的一個動點(點〃不與點。、9重合),以每秒1個單位的速度由點。向點“運動,過點〃的直線
與y軸平行,直線。交邊04或邊AB于點Q,交邊。?;蜻?C于點心設(shè)點P.運動時間為/,線段QR的長度為明己
知/=4時,直線。恰好過點C.
①當(dāng)0<r<3時,求〃?關(guān)于,的函數(shù)關(guān)系式;
②點P出發(fā)時點E也從點3出發(fā),以每秒1個單位的速度向點。運動,點尸停止時點E也停止.設(shè)VQRE的面積為S,
求S與/的函數(shù)關(guān)系式;
③直接寫出②中S的最大值是.
2.v>3x-2
23.(12分)(1)解不等式組:2x-l12;
----->—x——
323
2xx
(2)解方程:------+------
2x—1x—2
24.如匡,在菱形ABCD中,點P在對角線AC上,且PA=PD,。。是△PAD的外接圓.
(1)求證:AB是。O的切線;
(2)若AC=8,tanZBAC=—,求@o的半徑.
2
參考答案
一、選擇題(共10小題,每小題3分,共30分)
1、A
【解題分析】
根據(jù)新定義得到扇形的弧長為5,然后根據(jù)扇形的面積公式求解.
【題目詳解】
125
解:圓錐的側(cè)面積=7?5?5=二.
22
故選A.
【題目點撥】
本題考查圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母
線長.
2、B
【解題分析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE?+CF2=EF2,進而可求出CE2+CF”的
值.
【題目詳解】
解:YCE平分NACB,CF平分NACD,
AZACE=-ZACB,ZACF=-ZACD,BPZECF=-(ZACB+ZACD)=90°,
222
???△EFC為直角三角形,
又,.,EF〃BC,CE平分NACB,CF平分NACD,
AZECB=ZMEC=ZECM,ZDCF=ZCFM=ZMCF,
/.CM=EM=MF=5,EF=1O,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.
【題目點撥】
本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的
角平分線),直角三角形的判定(有一個角為90。的三角形是直角三角形)以及勾股定理的運用,解題的關(guān)鍵是首先證
明出AECF為直角三角形.
3、C
【解題分析】
解:???4O〃BE〃。凡根據(jù)平行線分線段成比例定理可得
AB=DE
~BC~~EF
解得EH
故選C.
4、B
【解題分析】
(1)根據(jù)完全平方公式進行解答;
(2)根據(jù)合并同類項進行解答;
(3)根據(jù)合并同類項進行解答;
(4)根據(jù)零的乘方進行解答.
【題目詳解】
解:A、(a+b)2=a2+2ah+h2,故此選項錯誤:
B、3n+3n+3n=3n+l,正確;
C>a3+a3=2a3,故此選項錯誤;
D、(ab)2=a2b,故此選項錯誤;
故選B.
【題目點撥】
本題考查整數(shù)指數(shù)寨和整式的運算,解題關(guān)鍵是掌握各自性質(zhì).
5、D
【解題分析】
根據(jù)平均數(shù)、中位數(shù)、眾數(shù)和方差的定義逐一求解可得.
【題目詳解】
解:A、平均數(shù)為/+6+2+3+J=3,正確;
5
B、重新排列為1、2、3、3、6,則中位數(shù)為3,正確;
C、眾數(shù)為3,正確;
D、方差為,x[(L3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,錯誤;
5
故選:D.
【題目點撥】
本題考杳了眾數(shù)、平均數(shù)、中位數(shù)、方差.平均數(shù)平均數(shù)表示一組數(shù)據(jù)的平均程度.中位數(shù)是將一組數(shù)據(jù)從小到大(或
從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù));方差是用來衡量一組數(shù)據(jù)波動大小的量.
6、C
【解題分析】
科學(xué)記數(shù)法的表示形式為axion的形式,其中l(wèi)W|a|V10,n為整數(shù).確定〃的值時,要看把原數(shù)變成。時,小數(shù)點移
動了多少位,〃的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,〃是正數(shù);當(dāng)原數(shù)的絕對值VI時,〃是負(fù)
數(shù).
【題目詳解】
7490000=7.49x106.
故選C.
【題目點撥】
此題考杳科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為0X10。的形式,其中1$同<10,〃為整數(shù),表示時關(guān)鍵要
正確確定。的值以及〃的值.
7、D
【解題分析】
求出不等式組的解集,根據(jù)已知求出IvE,、34g<4,求出2Va“、9<b<12,即可得出答案.
23
【題目詳解】
解不等式2x-aK),得:x>—,
2
解不等式3x-bW0,得:xwg,
;不等式組的整數(shù)解僅有x=2、x=3,
ab
則1V—W2、3<-<4,
23
解得:2<a<4^9<b<12,
則a=3時,b=9、10、11;
當(dāng)a=4時,b=9>10、11;
所以適合這個不等式組的整數(shù)a、b組成的有序數(shù)對(a,b)共有6個,
故選:D.
【題目點撥】
本題考查了解一元一次不等式組,不等式組的整數(shù)解,有序?qū)崝?shù)對的應(yīng)用,解此題的根據(jù)是求出a、b的值.
8、A
【解題分析】
由相反數(shù)的定義:“只有符號不同的兩個數(shù)互為相反數(shù)”可知?5的相反數(shù)是5.
故選A.
9、C
【解題分析】
根據(jù)數(shù)軸上點的位置判斷出a?4與a?11的正負(fù),原式利用二次根式性質(zhì)及絕對值的代數(shù)意義化簡,去括號合并即可
得到結(jié)果.
【題目詳解】
解:根據(jù)數(shù)軸上點的位置得:5<a<10,
Aa-4>0,a-1K0,
則原式=|a-4|-|a-ll|=a-4+a-ll=2a-15,
故選:C.
【題目點撥】
此題考查了二次根式的性質(zhì)與化簡,以及實數(shù)與數(shù)軸,熟練掌握運算法則是解本題的關(guān)鍵.
10、C
【解題分析】
如圖所示,(a+b)2=21
.\a2+2ab+b2=21,
「大正方形的面積為13,2ab=21?13=8,
二小正方形的面積為13-8=1.
故選C.
考點:勾股定理的證明.
二、填空題(本大題共6個小題,每小題3分,共18分)
11、-6增大
【解題分析】
;反比例函數(shù)二人的圖象經(jīng)過點(?3,2),
x
/.2=—,即A=2x(-3)=-6,
-3
則),隨x的增大而增大.
故答案為?6;增大.
【題目點撥】
本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質(zhì):
(1)當(dāng)k>0時,函數(shù)圖象在一,三象限,在每個象限內(nèi),y隨x的增大而減?。?/p>
(2)當(dāng)kVO時,函數(shù)圖象在二,四象限,在每個象限內(nèi),y隨x的增大而增大.
12、x>l.
【解題分析】
根據(jù)被開方數(shù)大于等于0列式計算即可得解.
【題目詳解】
根據(jù)題意得,x-1>0,
解得也1.
故答案為X>1.
【題目點撥】
本題考查函數(shù)自變量的取值范圍,知識點為:二次根式的被開方數(shù)是非負(fù)數(shù).
13、1
【解題分析】
1X0180)2
試題分析:根據(jù)題意可得圓心角的度數(shù)為:——,則3="產(chǎn)—兀=1.
7T—
360360
考點:扇形的面積計算.
14、1.
【解題分析】
去分母得:7x+5(x-l)=2m-L
因為分式方程有增根,所以x?l=0,所以x=L
把x=l代入7x+5(x-l)=2m-L得:7=2m-L
解得:m=l,
故答案為1.
15、(0,0)或(0,-8)或(?6,0)
【解題分析】
由P(-3,?4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點分別與x軸、y軸交于另外
一點,共有三個.
【題目詳解】
解:???P(-3,-4)到原點距離為5,
而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點且分別交x軸、y軸于另外兩點(如圖所示),
,故坐標(biāo)軸上到P點距離等于5的點有三個:(0,0)或(0,-8)或(?6,0).
故答案是:(0,0)或(0,-8)或(-6,0).
【解題分析】
13
由題意可知:2x.y=],然后等式兩邊同時乘以?3得到-6x+3y=?;,然后代入計算即可.
【題目詳解】
2x-y=7
A-6x+3y=-|.
…35
原式=?一/=--
22
故答案為?!■?
2
【題目點撥】
3
本題主要考查的是求代數(shù)式的值,利用等式的性質(zhì)求得-6x+3y=?1是解題的關(guān)鍵.
三、解答題(共8題,共72分)
17、1.
【解題分析】
分析:本題涉及乘方、負(fù)指數(shù)累、二次根式化簡、絕對值和特殊角的三角函數(shù)5個考點.在計算時,需要針對每個考
點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.
詳解;原式=1+4-(273-2)+4x2^,
2
=1+4?26+2+26,
=1.
點睛:本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整
數(shù)指數(shù)第、零指數(shù)幕、二次根式、絕對值等考點的運算.
18、解:設(shè)OC=x,
在RtAAOC中,VZACO=45°,AOA=OC=x.
在R3BOC中,VZBCO=30°,OB=OC?tan30°=—x.
3
VAB=OA-OB=X--x=2,解得x=3+x/3?1+1.73=4.73?5.
3
,OC=5米.
答:C處到樹干DO的距離CO為5米.
【解題分析】
解直角三角形的應(yīng)用(仰角俯角問題),銳角三角函數(shù)定義,特殊角的三角函數(shù)值.
【分析】設(shè)OC二x,在R3AOC中,由于NACO=45。,故OA=x,在RtABOC中,由于NBCO=30。,故
OB=OC?tan30°=—x,再根據(jù)AB=OA-OB=2即可得出結(jié)論.
3
19、9
【解題分析】
根據(jù)完全平方公式、平方差公式、單項式乘多項式可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解
答本題.
【題目詳解】
(2x+y)2+-力(冗+y)-5x(x-y)
=4x2+4Ay+y2+x2-y2-5x2+5xy
=9xy
當(dāng)x=yfl+1?y=>/2一1時,
原式=9|:夜+1)(&-1)
=9x(2-l)
=9x1
=9
【題目點撥】
本題考查整式的化簡求值,解答本題的關(guān)鍵是明確整式化簡求值的方法.
20、(1)y=-x2+2x+l;(2)-m2+lm.(1)2.
【解題分析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得C點坐標(biāo),根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標(biāo)減
較的縱坐標(biāo),可得答案;
(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得F點坐標(biāo),根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標(biāo)減
較的縱坐標(biāo),可得DE的長,根據(jù)平行四邊形的對邊相等,可得關(guān)于m的方程,根據(jù)解方程,可得m的值.
【題目詳解】
解:(1)???點A(-1,0),點B(1,0)在拋物線y=?x2+bx+c上,
-1+/?+c=0{b=2
???{_9+3"C=O'解得C=3'
此拋物線所對應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+l;
(2)二?比拋物線所對應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x2+2x+L
AC(0,1).
設(shè)BC所在的直線的函數(shù)解析式為y=kx+b,將B、C點的坐標(biāo)代入函數(shù)解析式,得
3攵+〃=()k=-\
,解得(
\b=3b=3
即BC的函數(shù)解析式為y=-x+l.
由P在BC上,F(xiàn)在拋物線上,得
P(m,-m+1),F(m,-m2+2m+l).
PF=-m2+2m+l-(-m+1)=-m2+lm.
(1)如圖
2
二?此拋物線所對應(yīng)的函數(shù)表達(dá)式y(tǒng)=-x+2X+l,
AD(1,4).
???線段BC與拋物線的對稱軸交于點E.
當(dāng)x=l時,y=-x+l=2?
AE(1,2),
ADE=4-2=2.
由四邊形PEDF為平行四邊形,得
PF=DE,BP-m2+lm=2,
解得mi=Lmz=2.
當(dāng)m=I時,線段PF與DE重合,m=l(不符合題意,舍).
當(dāng)m=2時,四邊形PEDF為平行四邊形.
考點:二次函數(shù)綜合題.
21、詳見解析
【解題分析】
利用.4/15證明“8c可ECD即可解決問題?
【題目詳解】
BCD
證明:???(,是線段/3D的中點
:-BC=CD
,?ABHEC
?e?4=至co
在AABC^』ECD中,
44=
4=48
BC=CD
AABC-AECD
=EC
【題目點撥】
本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形的全等的條件,屬于中考常考題型.
7721
22、(1)A(3,3),8(6,0);(2)①,〃=—/;②當(dāng)()</<3時,5=—/^;
當(dāng)3v,<4時,S=/+—18;當(dāng)441<6時,S=—j/+■^■1—45;(3)-^-.
【解題分析】
(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問題;
(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標(biāo),利用兩點間距離公式即可解決問題;②分三
種情形分別求解即可解決問題;③利用②中的函數(shù),利用配方法求出最值即可;
【題目詳解】
解:(1)由題意OA3是等腰直角三角形,
QOB=6
.?.A(3,3),B(6,0)
(2)QA(3,3),3(6,0),
「?線直04的解析式為)'=%,直線A8的解析式》=-x+6
.」=4吐直線。恰好過點。,0C=5.
.*.C(4-3),
???直線0C的解析式為y=—』."直線BC的解析式為y=j.r-9
42
(3)
①當(dāng)0<r<3時,Q(//),R?丁
\4/
37
44
117721
②當(dāng)0<f<3時,S=-PEQR=-(6-2!)-t—f
當(dāng)3Vz<4時,S=gPEQR=g.(2i—6),(—/+6+1/=-4-——1—18
當(dāng)4W1<6時,S=;PEQR=;.(2z-6)^-r+6+|z+9^=-|r2+yr-45
③當(dāng)0<。<3時,
QS」「與W2T63
44412)16,
.?J=當(dāng)時,S的最大值為孚.
216
當(dāng)3v/<4時,
,S=,2+%8,H7丫127?12
444(:2J44
.」=4時,S的值最大,最大值為5?
火5(9丫45
當(dāng)441<6時,S=45二一—t——十——,
222(2)8
945
.■?/二彳時,S的最大值為
28
45
綜上所述,最大值為彳
O
故答案為4一5.
8
%
【題目點撥】
本題考查四邊形綜合題、一次函數(shù)白勺應(yīng)用、二次函數(shù)的應(yīng)用、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建
一次函數(shù)或二次函數(shù)解決實際問題,屬于中考壓軸題.
4
23、(1)-2<x<2;(2)x=—.
5
【解題分析】
(1)先求出不等式組中每個不等式的解集,再求出不等式組的解集即可;
(2)先把分式方程轉(zhuǎn)化成整式方程,求出整式方程的解,再進行檢驗即可.
【題目詳解】
2x>3x-2@
??
,解不等式①得:x<2,
解不等式②得:x>-2,
???不等式組的解集為?2WxV2;
(2)方程兩邊都乘以(2x?1)(x?2)得
2x(x-2)+x(2x-1)=2(x-2)(2x-1),
4
解得:x=—,
J
4
檢驗:把'=一代入(2x-1)(x-2)RO,
4
所以'=彳是原方程的解,
4
即原方程的解是x=y.
【題目點撥】
本題考查了解一元一次不等式組和解分式方程,根據(jù)不等式的解集找出不等式組的解集是解(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超齡人員安全協(xié)議書
- 防火涂料合作協(xié)議書
- 超市股份經(jīng)營協(xié)議書
- 通訊專利轉(zhuǎn)讓協(xié)議書
- 修理店轉(zhuǎn)讓合同協(xié)議書
- 道路建設(shè)出資協(xié)議書
- 項目運營招商協(xié)議書
- 金店股權(quán)合作協(xié)議書
- 高校應(yīng)屆就業(yè)協(xié)議書
- 出租車并車合同協(xié)議書
- 取送車合同協(xié)議書
- NB/T 11446-2023煤礦連采連充技術(shù)要求
- 電廠化驗規(guī)程
- 2023-2024學(xué)年廣東省深圳市福田區(qū)八年級(下)期末數(shù)學(xué)試卷(含答案)
- 職業(yè)技術(shù)學(xué)?!痘A(chǔ)護理學(xué)》課程標(biāo)準(zhǔn)
- DL∕T 860.10-2018 電力自動化通信網(wǎng)絡(luò)和系統(tǒng) 第10部分:一致性測試
- 2024年甘肅省蘭州市中考地理試卷(含答案解析)
- 大數(shù)據(jù)可視化智慧樹知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 山東省濟南市歷城區(qū)2023-2024學(xué)年八年級下學(xué)期期末數(shù)學(xué)試題(無答案)
- 綠色建筑運行標(biāo)識自評報告參考樣式
- 穴位貼敷法技術(shù)操作評分標(biāo)準(zhǔn)
評論
0/150
提交評論