




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省新鄉(xiāng)市一中教育集團2025年初三第三次教學質量檢測試題數(shù)學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AB=3,AD=4,點E在邊BC上,若AE平分∠BED,則BE的長為()A. B. C. D.4﹣2.如圖,一次函數(shù)和反比例函數(shù)的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或3.3點40分,時鐘的時針與分針的夾角為()A.140° B.130° C.120° D.110°4.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的圖象可能是()A. B. C. D.5.函數(shù)y=中自變量x的取值范圍是()A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<16.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣367.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.8.如圖,在△ABC中,點D在BC上,DE∥AC,DF∥AB,下列四個判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形9.魏晉時期的數(shù)學家劉徽首創(chuàng)割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內接正多邊形,當正多邊形的邊數(shù)不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續(xù)努力,當正多邊形的邊數(shù)增加24576時,得到了精確到小數(shù)點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據(jù)“割圓術”,由圓內接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π10.下列計算正確的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=211.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a(chǎn)>3 B.a(chǎn)<3 C.a(chǎn)≥3 D.a(chǎn)≤312.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長為A.6 B. C. D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過第一、三、四象限,則是k的值可以是_____.(寫出一個即可).14.點A到⊙O的最小距離為1,最大距離為3,則⊙O的半徑長為_____.15.如圖,已知反比例函數(shù)y=kx16.已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應值如表所示:x…﹣5﹣4﹣3﹣2﹣1…y…﹣8﹣3010…當y<﹣3時,x的取值范圍是_____.17.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.18.對于一切不小于2的自然數(shù)n,關于x的一元二次方程x2﹣(n+2)x﹣2n2=0的兩個根記作an,bn(n≥2),則______三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.20.(6分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.求證:DF是BF和CF的比例中項;在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.21.(6分)一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關系如圖所示.求與之間的函數(shù)關系式,并寫出自變量的取值范圍;求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?22.(8分)新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數(shù)關系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應定為多少元?23.(8分)如圖,將等腰直角三角形紙片ABC對折,折痕為CD.展平后,再將點B折疊在邊AC上(不與A、C重合),折痕為EF,點B在AC上的對應點為M,設CD與EM交于點P,連接PF.已知BC=1.(1)若M為AC的中點,求CF的長;(2)隨著點M在邊AC上取不同的位置,①△PFM的形狀是否發(fā)生變化?請說明理由;②求△PFM的周長的取值范圍.24.(10分)如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結果保留和根號).25.(10分)(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點在BC邊上,BP=1.①特殊情形:若MP過點A,NP過點D,則=.②類比探究:如圖2,將∠MPN繞點P按逆時針方向旋轉,使PM交AB邊于點E,PN交AD邊于點F,當點E與點B重合時,停止旋轉.在旋轉過程中,的值是否為定值?若是,請求出該定值;若不是,請說明理由.(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點E是⊙A上一動點,CF⊥CE交AD于點F.請直接寫出當△AEB為直角三角形時的值.26.(12分)某市教育局為了了解初一學生第一學期參加社會實踐活動的情況,隨機抽查了本市部分初一學生第一學期參加社會實踐活動的天數(shù),并將得到的數(shù)據(jù)繪制成了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:扇形統(tǒng)計圖中a的值為%,該扇形圓心角的度數(shù)為;補全條形統(tǒng)計圖;如果該市共有初一學生20000人,請你估計“活動時間不少于5天”的大約有多少人?27.(12分)為了了解學生關注熱點新聞的情況,“兩會”期間,小明對班級同學一周內收看“兩會”新聞的次數(shù)情況作了調查,調查結果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標出).根據(jù)上述信息,解答下列各題:×(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;(2)對于某個群體,我們把一周內收看某熱點新聞次數(shù)不低于次的人數(shù)占其所在群體總人數(shù)的百分比叫做該群體對某熱點新聞的“關注指數(shù)”.如果該班級男生對“兩會”新聞的“關注指數(shù)”比女生低,試求該班級男生人數(shù);(3)為進一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量(如表).統(tǒng)計量平均數(shù)(次)中位數(shù)(次)眾數(shù)(次)方差…該班級男生…根據(jù)你所學過的統(tǒng)計知識,適當計算女生的有關統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
首先根據(jù)矩形的性質,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據(jù)AE平分∠BED求得ED=AD;利用勾股定理求得EC的長,進而求得BE的長.【詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.本題考查了矩形的性質與角平分線的性質以及勾股定理的應用,解題的關鍵是熟練的掌握矩形的性質與角平分線的性質以及勾股定理的應用.2、B【解析】
根據(jù)圖象找出一次函數(shù)圖象在反比例函數(shù)圖象上方時對應的自變量的取值范圍即可.【詳解】觀察函數(shù)圖象可發(fā)現(xiàn):或時,一次函數(shù)圖象在反比例函數(shù)圖象上方,∴使成立的取值范圍是或,故選B.本題考查了反比例函數(shù)與一次函數(shù)綜合,函數(shù)與不等式,利用數(shù)形結合思想是解題的關鍵.3、B【解析】
根據(jù)時針與分針相距的份數(shù)乘以每份的度數(shù),可得答案.【詳解】解:3點40分時針與分針相距4+=份,30°×=130,故選B.本題考查了鐘面角,確定時針與分針相距的份數(shù)是解題關鍵.4、C【解析】
根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.故選C.本題考查了函數(shù)圖像的性質,屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關系是解題關鍵.5、A【解析】分析:根據(jù)分式的分母不為0;偶次根式被開方數(shù)大于或等于0;當一個式子中同時出現(xiàn)這兩點時,應該是取讓兩個條件都滿足的公共部分.詳解:根據(jù)題意得到:,解得x≥-1且x≠1,故選A.點睛:本題考查了函數(shù)自變量的取值范圍問題,判斷一個式子是否有意義,應考慮分母上若有字母,字母的取值不能使分母為零,二次根號下字母的取值應使被開方數(shù)為非負數(shù).易錯易混點:學生易對二次根式的非負性和分母不等于0混淆.6、B【解析】
解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點B,∴﹣4=,得k=﹣32.故選B.本題主要考查菱形的性質和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關鍵在于根據(jù)A點坐標求得OA的長,再根據(jù)菱形的性質求得B點坐標,然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.7、D【解析】
找到從正面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.
故選A.本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.8、C【解析】A選項,∵在△ABC中,點D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項,∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項,因為添加條件“AD平分∠BAC”結合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯誤;D選項,因為由添加的條件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過證∠EAD=∠CAD=∠EDA證得AE=DE,結合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.9、C【解析】
連接OC、OD,根據(jù)正六邊形的性質得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關鍵.10、D【解析】分析:根據(jù)完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術平方根的計算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術平方根的定義是解題的關鍵.11、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取小;大小小大中間找;大大小小找不到.12、D【解析】
解:因為AB是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.本題考查圓的基本性質;垂經(jīng)定理及解直角三角形,綜合性較強,難度不大.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
由一次函數(shù)圖象經(jīng)過第一、三、四象限,可知k>0,﹣1<0,在范圍內確定k的值即可.【詳解】解:因為一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.根據(jù)一次函數(shù)圖象所經(jīng)過的象限,可確定一次項系數(shù),常數(shù)項的值的符號,從而確定字母k的取值范圍.14、1或2【解析】
分類討論:點在圓內,點在圓外,根據(jù)線段的和差,可得直徑,根據(jù)圓的性質,可得答案.【詳解】點在圓內,圓的直徑為1+3=4,圓的半徑為2;點在圓外,圓的直徑為3?1=2,圓的半徑為1,故答案為1或2.本題考查點與圓的位置關系,關鍵是分類討論:點在圓內,點在圓外.15、34【解析】
由點B的坐標為(2,3),而點C為OB的中點,則C點坐標為(1,1.5),利用待定系數(shù)法可得到k=1.5,然后利用k的幾何意義即可得到△OAD的面積.【詳解】∵點B的坐標為(2,3),點C為OB的中點,∴C點坐標為(1,1.5),∴k=1×1.5=1.5,即反比例函數(shù)解析式為y=1.5x∴S△OAD=12×1.5=3故答案為:34本題考查了反比例函數(shù)的幾何意義,一般的,從反比例函數(shù)y=kx(k為常數(shù),k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標原點為頂點的矩形的面積等于常數(shù)k,以點P及點P的一個垂足和坐標原點為頂點的三角形的面積等于16、x<﹣4或x>1【解析】
觀察表格求出拋物線的對稱軸,確定開口方向,利用二次函數(shù)的對稱性判斷出x=1時,y=-3,然后寫出y<-3時,x的取值范圍即可.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=-2,拋物線的開口向下,且x=1時,y=-3,所以,y<-3時,x的取值范圍為x<-4或x>1.故答案為x<-4或x>1.本題考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,觀察圖表得到y(tǒng)=-3時的另一個x的值是解題的關鍵.17、1.【解析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質.注意掌握線段的對應關系是解此題的關鍵.18、﹣.【解析】試題分析:由根與系數(shù)的關系得:,則,則,∴原式=.點睛:本題主要考查的就是一元二次方程的韋達定理以及規(guī)律的整理,屬于中等題型.解決這個問題的關鍵就是要想到使用韋達定理,然后根據(jù)計算的法則得出規(guī)律,從而達到簡便計算的目的.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)【解析】
(1)直接利用求概率公式計算即可;(2)畫樹狀圖(或列表格)列出所有等可能結果,根據(jù)概率公式即可解答.【詳解】(1);(2)方法1:根據(jù)題意可畫樹狀圖如下:方法2:根據(jù)題意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(樹狀圖)可知,總共有12種結果,每種結果出現(xiàn)的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B喬治的結果有1種:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B喬治)本題考查的是用列表法或樹狀圖法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解決問題用到概率公式:概率=所求情況數(shù)與總情況數(shù)之比.20、證明見解析【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得,由(1)可得,從而得,問題得證.試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中點,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴,由(1)知△DFD∽△DFC,∴,∴,∴EG·CF=ED·DF.21、(1)(2),,144元【解析】
(1)利用待定系數(shù)法求解可得關于的函數(shù)解析式;(2)根據(jù)“總利潤每件的利潤銷售量”可得函數(shù)解析式,將其配方成頂點式,利用二次函數(shù)的性質進一步求解可得.【詳解】(1)設與的函數(shù)解析式為,將、代入,得:,解得:,所以與的函數(shù)解析式為;(2)根據(jù)題意知,,,當時,隨的增大而增大,,當時,取得最大值,最大值為144,答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.本題考查了二次函數(shù)的應用,解題的關鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及根據(jù)相等關系列出二次函數(shù)解析式及二次函數(shù)的性質.22、(1)w=﹣2x2+480x﹣25600;(2)銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元(3)銷售單價應定為100元【解析】
(1)用每件的利潤乘以銷售量即可得到每天的銷售利潤,即然后化為一般式即可;
(2)把(1)中的解析式進行配方得到頂點式然后根據(jù)二次函數(shù)的最值問題求解;
(3)求所對應的自變量的值,即解方程然后檢驗即可.【詳解】(1)w與x的函數(shù)關系式為:(2)∴當時,w有最大值.w最大值為1.答:銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元.(3)當時,解得:∵想賣得快,不符合題意,應舍去.答:銷售單價應定為100元.23、(1)CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由見解析;②△PFM的周長滿足:2+2<(1+)y<1+1.【解析】
(1)由折疊的性質可知,F(xiàn)B=FM,設CF=x,則FB=FM=1﹣x,在Rt△CFM中,根據(jù)FM2=CF2+CM2,構建方程即可解決問題;(2)①△PFM的形狀是等腰直角三角形,想辦法證明△POF∽△MOC,可得∠PFO=∠MCO=15°,延長即可解決問題;②設FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周長=(1+)y,由2<y<1,可得結論.【詳解】(1)∵M為AC的中點,∴CM=AC=BC=2,由折疊的性質可知,F(xiàn)B=FM,設CF=x,則FB=FM=1﹣x,在Rt△CFM中,F(xiàn)M2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=,即CF=;(2)①△PFM的形狀是等腰直角三角形,不會發(fā)生變化,理由如下:由折疊的性質可知,∠PMF=∠B=15°,∵CD是中垂線,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴=,∴=,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴,∴,∴,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,設FM=y,由勾股定理可知:PF=PM=y,∴△PFM的周長=(1+)y,∵2<y<1,∴△PFM的周長滿足:2+2<(1+)y<1+1.本題考查三角形綜合題、等腰直角三角形的性質和判定、翻折變換、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是正確尋找相似三角形解決問題,學會利用參數(shù)解決問題,屬于中考??碱}型.24、(1)詳見解析;(2);【解析】
(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質得到∠OCE=90°,得到OC⊥CE,于是得到結論;
(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結論.【詳解】:(1)連接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切線;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等邊三角形,
∴OB=BC=,
∴陰影部分的面積=,本題考查了切線的判定,等腰三角形的判定和性質
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深入理解注冊會計師試題及答案
- 2025年證券從業(yè)考試技能強化與試題答案
- 項目管理的決策實施技巧試題及答案
- 批發(fā)磚石材料的合同協(xié)議
- 高效學習注冊會計師脈絡試題及答案
- 深入了解金融市場的構成與2025年考試試題及答案
- 2025年銀行資格證考試的知識縱覽試題及答案
- 注會現(xiàn)場模擬試題及答案
- 2025年證券投資合規(guī)管理試題及答案
- 暖氣片購買與銷售合同協(xié)議書模板
- 鉆井基本知識
- 2025年中考歷史總復習十大專題知識復習講義
- 護膚夏日美白課件
- 2025年河南藝術職業(yè)學院高職單招職業(yè)適應性測試歷年(2019-2024年)真題考點試卷含答案解析
- 2025購銷商品合同模板
- kmeans聚類算法原理試題及答案
- 2024年山西華陽新材料科技集團有限公司招聘筆試真題
- 國家糧食和物資儲備局垂直管理系統(tǒng)事業(yè)單位招聘筆試真題2024
- 2025年03月雙鴨山市“市委書記進校園”引才活動黑龍江能源職業(yè)學院13人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年湖南興湘投資控股集團有限公司春季校園招聘28人筆試參考題庫附帶答案詳解
- 隧道二襯臺車安裝拆除施工方案
評論
0/150
提交評論