2024-2025學(xué)年廣東省茂名市茂南區(qū)初三下學(xué)期第三次段考數(shù)學(xué)試題試卷含解析_第1頁(yè)
2024-2025學(xué)年廣東省茂名市茂南區(qū)初三下學(xué)期第三次段考數(shù)學(xué)試題試卷含解析_第2頁(yè)
2024-2025學(xué)年廣東省茂名市茂南區(qū)初三下學(xué)期第三次段考數(shù)學(xué)試題試卷含解析_第3頁(yè)
2024-2025學(xué)年廣東省茂名市茂南區(qū)初三下學(xué)期第三次段考數(shù)學(xué)試題試卷含解析_第4頁(yè)
2024-2025學(xué)年廣東省茂名市茂南區(qū)初三下學(xué)期第三次段考數(shù)學(xué)試題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024-2025學(xué)年廣東省茂名市茂南區(qū)初三下學(xué)期第三次段考數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1.四個(gè)有理數(shù)﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣32.某校九年級(jí)(1)班學(xué)生畢業(yè)時(shí),每個(gè)同學(xué)都將自己的相片向全班其他同學(xué)各送一張留作紀(jì)念,全班共送了1980張相片,如果全班有x名學(xué)生,根據(jù)題意,列出方程為A. B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19803.如圖,函數(shù)y1=x3與y2=在同一坐標(biāo)系中的圖象如圖所示,則當(dāng)y1<y2時(shí)()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0 D.﹣1<x<0或x>14.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣35.在數(shù)軸上到原點(diǎn)距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道6.如圖,已知函數(shù)y=﹣與函數(shù)y=ax2+bx的交點(diǎn)P的縱坐標(biāo)為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>07.二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定8.由6個(gè)大小相同的正方體搭成的幾何體如圖所示,比較它的正視圖、左視圖和俯視圖的面積,則()A.三個(gè)視圖的面積一樣大 B.主視圖的面積最小C.左視圖的面積最小 D.俯視圖的面積最小9.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°10.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時(shí),已知水流速度為4千米/時(shí),若設(shè)該輪船在靜水中的速度為x千米/時(shí),則可列方程()A. B.C.+4=9 D.二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11.若m﹣n=4,則2m2﹣4mn+2n2的值為_(kāi)____.12.如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長(zhǎng)線(xiàn)相交于點(diǎn)E,AB、DC的延長(zhǎng)線(xiàn)相交于點(diǎn)F.若∠E+∠F=80°,則∠A=____°.13.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點(diǎn)C,若OC=6,則AB的長(zhǎng)等于__.14.計(jì)算:()0﹣=_____.15.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線(xiàn)段BD的最大值為_(kāi)____.16.計(jì)算:a6÷a3=_________.17.已知邊長(zhǎng)為5的菱形中,對(duì)角線(xiàn)長(zhǎng)為6,點(diǎn)在對(duì)角線(xiàn)上且,則的長(zhǎng)為_(kāi)_________.三、解答題(共7小題,滿(mǎn)分69分)18.(10分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線(xiàn)交CB的延長(zhǎng)線(xiàn)于點(diǎn)E,交AC于點(diǎn)F.(1)求證:點(diǎn)F是AC的中點(diǎn);(2)若∠A=30°,AF=,求圖中陰影部分的面積.19.(5分)如圖,在菱形ABCD中,點(diǎn)P在對(duì)角線(xiàn)AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線(xiàn);(2)若AC=8,tan∠BAC=,求⊙O的半徑.20.(8分)如圖,∠AOB=90°,反比例函數(shù)y=﹣(x<0)的圖象過(guò)點(diǎn)A(﹣1,a),反比例函數(shù)y=(k>0,x>0)的圖象過(guò)點(diǎn)B,且AB∥x軸.(1)求a和k的值;(2)過(guò)點(diǎn)B作MN∥OA,交x軸于點(diǎn)M,交y軸于點(diǎn)N,交雙曲線(xiàn)y=于另一點(diǎn)C,求△OBC的面積.21.(10分)如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時(shí)針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),求AE的長(zhǎng).22.(10分)手機(jī)下載一個(gè)APP、繳納一定數(shù)額的押金,就能以每小時(shí)0.5到1元的價(jià)格解鎖一輛自行車(chē)任意騎行,共享單車(chē)為解決市民出行的“最后一公里”難題幫了大忙,人們?cè)谙硎芸萍歼M(jìn)步、共享經(jīng)濟(jì)帶來(lái)的便利的同時(shí),隨意停放、加裝私鎖、推車(chē)下河、大卸八塊等毀壞共享單車(chē)的行為也層出不窮?某共享單車(chē)公司一月投入部分自行車(chē)進(jìn)入市場(chǎng),一月底發(fā)現(xiàn)損壞率不低于10%,二月初又投入1200輛進(jìn)入市場(chǎng),使可使用的自行車(chē)達(dá)到7500輛.一月份該公司投入市場(chǎng)的自行車(chē)至少有多少輛?二月份的損壞率為20%,進(jìn)入三月份,該公司新投入市場(chǎng)的自行車(chē)比二月份增長(zhǎng)4a%,由于媒體的關(guān)注,毀壞共享單車(chē)的行為點(diǎn)燃了國(guó)民素質(zhì)的大討論,三月份的損壞率下降為a%,三月底可使用的自行車(chē)達(dá)到7752輛,求a的值.23.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)與反比例函數(shù)的圖像交于點(diǎn)和點(diǎn),且經(jīng)過(guò)點(diǎn).求反比例函數(shù)和一次函數(shù)的表達(dá)式;求當(dāng)時(shí)自變量的取值范圍.24.(14分)一輛汽車(chē),新車(chē)購(gòu)買(mǎi)價(jià)30萬(wàn)元,第一年使用后折舊,以后該車(chē)的年折舊率有所變化,但它在第二、三年的年折舊率相同.已知在第三年年末,這輛車(chē)折舊后價(jià)值為萬(wàn)元,求這輛車(chē)第二、三年的年折舊率.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.2、D【解析】

根據(jù)題意得:每人要贈(zèng)送(x﹣1)張相片,有x個(gè)人,然后根據(jù)題意可列出方程.【詳解】根據(jù)題意得:每人要贈(zèng)送(x﹣1)張相片,有x個(gè)人,∴全班共送:(x﹣1)x=1980,故選D.此題主要考查了一元二次方程的應(yīng)用,本題要注意讀清題意,弄清楚每人要贈(zèng)送(x﹣1)張相片,有x個(gè)人是解決問(wèn)題的關(guān)鍵.3、B【解析】

根據(jù)圖象知,兩個(gè)函數(shù)的圖象的交點(diǎn)是(1,1),(-1,-1).由圖象可以直接寫(xiě)出當(dāng)y1<y2時(shí)所對(duì)應(yīng)的x的取值范圍.【詳解】根據(jù)圖象知,一次函數(shù)y1=x3與反比例函數(shù)y2=的交點(diǎn)是(1,1),(-1,?1),∴當(dāng)y1<y2時(shí),,0<x<1或x<-1;故答案選:B.本題考查了反比例函數(shù)與冪函數(shù),解題的關(guān)鍵是熟練的掌握反比例函數(shù)與冪函數(shù)的圖象根據(jù)圖象找出答案.4、A【解析】

用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.本題考查了有理數(shù)加法的運(yùn)算,解題的關(guān)鍵是要熟練掌握:“先符號(hào),后絕對(duì)值”.5、C【解析】

根據(jù)數(shù)軸上到原點(diǎn)距離等于3的數(shù)為絕對(duì)值是3的數(shù)即可求解.【詳解】絕對(duì)值為3的數(shù)有3,-3.故答案為C.本題考查數(shù)軸上距離的意義,解題的關(guān)鍵是知道數(shù)軸上的點(diǎn)到原點(diǎn)的距離為絕對(duì)值.6、C【解析】

首先求出P點(diǎn)坐標(biāo),進(jìn)而利用函數(shù)圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數(shù)y=﹣與函數(shù)y=ax2+bx的交點(diǎn)P的縱坐標(biāo)為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是正確得出P點(diǎn)坐標(biāo).7、C【解析】

設(shè)的兩根為x1,x2,由二次函數(shù)的圖象可知,;設(shè)方程的兩根為m,n,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設(shè)的兩根為x1,x2,∵由二次函數(shù)的圖象可知,,.設(shè)方程的兩根為m,n,則.故選C.本題考查的是拋物線(xiàn)與x軸的交點(diǎn),熟知拋物線(xiàn)與x軸的交點(diǎn)與一元二次方程根的關(guān)系是解答此題的關(guān)鍵.8、C【解析】試題分析:根據(jù)三視圖的意義,可知正視圖由5個(gè)面,左視圖有3個(gè)面,俯視圖有4個(gè)面,故可知主視圖的面積最大.故選C考點(diǎn):三視圖9、C【解析】

由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線(xiàn)的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.本題考查了等腰三角形的性質(zhì),平行線(xiàn)的性質(zhì),是基礎(chǔ)題.10、A【解析】

根據(jù)輪船在靜水中的速度為x千米/時(shí)可進(jìn)一步得出順流與逆流速度,從而得出各自航行時(shí)間,然后根據(jù)兩次航行時(shí)間共用去9小時(shí)進(jìn)一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時(shí),∴順流航行時(shí)間為:,逆流航行時(shí)間為:,∴可得出方程:,故選:A.本題主要考查了分式方程的應(yīng)用,熟練掌握順流與逆流速度的性質(zhì)是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11、1【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴當(dāng)m﹣n=4時(shí),原式=2×42=1.故答案為:1.12、50【解析】試題分析:連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對(duì)頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.試題解析:連結(jié)EF,如圖,∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考點(diǎn):圓內(nèi)接四邊形的性質(zhì).13、18【解析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.14、-1【解析】

本題需要運(yùn)用零次冪的運(yùn)算法則、立方根的運(yùn)算法則進(jìn)行計(jì)算.【詳解】由分析可得:()0﹣=1-2=﹣1.熟練運(yùn)用零次冪的運(yùn)算法則、立方根的運(yùn)算法則是本題解題的關(guān)鍵.15、3【解析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關(guān)系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,

,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點(diǎn)E,點(diǎn)B,點(diǎn)C不共線(xiàn)時(shí),EC<BC+BE;

若點(diǎn)E,點(diǎn)B,點(diǎn)C共線(xiàn)時(shí),EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),以及三角形的三邊關(guān)系,恰當(dāng)添加輔助線(xiàn)構(gòu)造全等三角形是本題的關(guān)鍵.16、a1【解析】

根據(jù)同底數(shù)冪相除,底數(shù)不變指數(shù)相減計(jì)算即可【詳解】a6÷a1=a6﹣1=a1.故答案是a1同底數(shù)冪的除法運(yùn)算性質(zhì)17、3或1【解析】

菱形ABCD中,邊長(zhǎng)為1,對(duì)角線(xiàn)AC長(zhǎng)為6,由菱形的性質(zhì)及勾股定理可得AC⊥BD,BO=4,分當(dāng)點(diǎn)E在對(duì)角線(xiàn)交點(diǎn)左側(cè)時(shí)(如圖1)和當(dāng)點(diǎn)E在對(duì)角線(xiàn)交點(diǎn)左側(cè)時(shí)(如圖2)兩種情況求BE得長(zhǎng)即可.【詳解】解:當(dāng)點(diǎn)E在對(duì)角線(xiàn)交點(diǎn)左側(cè)時(shí),如圖1所示:∵菱形ABCD中,邊長(zhǎng)為1,對(duì)角線(xiàn)AC長(zhǎng)為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4﹣1=3,當(dāng)點(diǎn)E在對(duì)角線(xiàn)交點(diǎn)左側(cè)時(shí),如圖2所示:∵菱形ABCD中,邊長(zhǎng)為1,對(duì)角線(xiàn)AC長(zhǎng)為6,∴AC⊥BD,BO==4,∵tan∠EAC=,解得:OE=1,∴BE=BO﹣OE=4+1=1,故答案為3或1.本題主要考查了菱形的性質(zhì),解決問(wèn)題時(shí)要注意分當(dāng)點(diǎn)E在對(duì)角線(xiàn)交點(diǎn)左側(cè)時(shí)和當(dāng)點(diǎn)E在對(duì)角線(xiàn)交點(diǎn)左側(cè)時(shí)兩種情況求BE得長(zhǎng).三、解答題(共7小題,滿(mǎn)分69分)18、(1)見(jiàn)解析;(2)【解析】

(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線(xiàn),則根據(jù)切線(xiàn)長(zhǎng)定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關(guān)系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據(jù)切線(xiàn)的性質(zhì)得到OD⊥EF,從而可計(jì)算出DE的長(zhǎng),然后根據(jù)扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進(jìn)行計(jì)算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線(xiàn),∵EF為⊙O的切線(xiàn),∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點(diǎn)F是AC中點(diǎn);(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線(xiàn),∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.本題考查了切線(xiàn)的性質(zhì):圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑.若出現(xiàn)圓的切線(xiàn),必連過(guò)切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.簡(jiǎn)記作:見(jiàn)切點(diǎn),連半徑,見(jiàn)垂直.也考查了圓周角定理和扇形的面積公式.19、(1)見(jiàn)解析;(2).【解析】分析:(1)連結(jié)OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質(zhì)得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線(xiàn)的判定定理得到直線(xiàn)AB與⊙O相切;(2)連結(jié)BD,交AC于點(diǎn)F,根據(jù)菱形的性質(zhì)得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設(shè)⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結(jié)論.詳解:(1)連結(jié)OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線(xiàn)AB與⊙O相切;(2)連結(jié)BD,交AC于點(diǎn)F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設(shè)⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點(diǎn)睛:本題考查了切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn).也考查了菱形的性質(zhì)和銳角三角函數(shù)以及勾股定理.20、(1)a=2,k=8(2)=1.【解析】分析:(1)把A(-1,a)代入反比例函數(shù)得到A(-1,2),過(guò)A作AE⊥x軸于E,BF⊥x軸于F,根據(jù)相似三角形的性質(zhì)得到B(4,2),于是得到k=4×2=8;

(2)求的直線(xiàn)AO的解析式為y=-2x,設(shè)直線(xiàn)MN的解析式為y=-2x+b,得到直線(xiàn)MN的解析式為y=-2x+10,解方程組得到C(1,8),于是得到結(jié)論.詳解:(1)∵反比例函數(shù)y=﹣(x<0)的圖象過(guò)點(diǎn)A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),過(guò)A作AE⊥x軸于E,BF⊥⊥x軸于F,∴AE=2,OE=1,∵AB∥x軸,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直線(xiàn)OA過(guò)A(﹣1,2),∴直線(xiàn)AO的解析式為y=﹣2x,∵M(jìn)N∥OA,∴設(shè)直線(xiàn)MN的解析式為y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直線(xiàn)MN的解析式為y=﹣2x+10,∵直線(xiàn)MN交x軸于點(diǎn)M,交y軸于點(diǎn)N,∴M(5,0),N(0,10),解得,,∴C(1,8),∴△OBC的面積=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.點(diǎn)睛:本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,反比例函數(shù)與一次函數(shù)交點(diǎn)問(wèn)題,相似三角形的判定和性質(zhì),求函數(shù)的解析式,三角形的面積的計(jì)算,正確的作出輔助線(xiàn)是解題的關(guān)鍵.21、(1);(2)詳見(jiàn)解析;(3)AE=.【解析】

(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對(duì)應(yīng)邊成比例,證得OG?OB=OE2,再利用OB與BD的關(guān)系,OE與EF的關(guān)系,即可證得結(jié)論;(3)首先設(shè)AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數(shù)的最值問(wèn)題,求得AE的長(zhǎng).【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過(guò)點(diǎn)O作OH⊥BC,∵BC=1,∴設(shè)AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當(dāng)時(shí),S△BEF+S△COF最大;即在旋轉(zhuǎn)過(guò)程中,當(dāng)△BEF與△COF的面積之和最大時(shí),本題屬于四邊形的綜合題,主要考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理以及二次函數(shù)的最值問(wèn)題.注意掌握轉(zhuǎn)化思想的應(yīng)用是解此題的關(guān)鍵.22、(1)7000輛;(2)a的值是1.【解析】

(1)設(shè)一月份該公司投入市場(chǎng)的自行車(chē)x輛,根據(jù)損壞率不低于10%,可得不等量關(guān)系:一月初投入的自行車(chē)-一月底可用的自行車(chē)≥一月?lián)p壞的自行車(chē)列不等式求解;(2)根據(jù)三月底可使用的自行車(chē)達(dá)到7752輛,可得等量關(guān)系為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論