




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第PyTorch搭建LSTM實現(xiàn)多變量時序負荷預(yù)測目錄I.前言II.數(shù)據(jù)處理III.LSTM模型IV.訓練V.測試VI.源碼及數(shù)據(jù)
I.前言
在前面的一篇文章PyTorch搭建LSTM實現(xiàn)時間序列預(yù)測(負荷預(yù)測)中,我們利用LSTM實現(xiàn)了負荷預(yù)測,但我們只是簡單利用負荷預(yù)測負荷,并沒有利用到其他一些環(huán)境變量,比如溫度、濕度等。
本篇文章主要考慮用PyTorch搭建LSTM實現(xiàn)多變量時間序列預(yù)測。
系列文章:
PyTorch搭建LSTM實現(xiàn)多變量多步長時序負荷預(yù)測
PyTorch深度學習LSTM從input輸入到Linear輸出
PyTorch搭建LSTM實現(xiàn)時間序列負荷預(yù)測
PyTorch搭建雙向LSTM實現(xiàn)時間序列負荷預(yù)測
II.數(shù)據(jù)處理
數(shù)據(jù)集為某個地區(qū)某段時間內(nèi)的電力負荷數(shù)據(jù),除了負荷以外,還包括溫度、濕度等信息。
本文中,我們根據(jù)前24個時刻的負荷以及該時刻的環(huán)境變量來預(yù)測下一時刻的負荷。
defload_data(file_name):
globalMAX,MIN
df=pd.read_csv(os.path.dirname(os.getcwd())+'/data/new_data/'+file_name,encoding='gbk')
columns=df.columns
df.fillna(df.mean(),inplace=True)
MAX=np.max(df[columns[1]])
MIN=np.min(df[columns[1]])
df[columns[1]]=(df[columns[1]]-MIN)/(MAX-MIN)
returndf
classMyDataset(Dataset):
def__init__(self,data):
self.data=data
def__getitem__(self,item):
returnself.data[item]
def__len__(self):
returnlen(self.data)
defnn_seq(file_name,B):
print('處理數(shù)據(jù):')
data=load_data(file_name)
load=data[data.columns[1]]
load=load.tolist()
data=data.values.tolist()
seq=[]
foriinrange(len(data)-24):
train_seq=[]
train_label=[]
forjinrange(i,i+24):
x=[load[j]]
forcinrange(2,8):
x.append(data[j][c])
train_seq.append(x)
train_label.append(load[i+24])
train_seq=torch.FloatTensor(train_seq)
train_label=torch.FloatTensor(train_label).view(-1)
seq.append((train_seq,train_label))
#print(seq[:5])
Dtr=seq[0:int(len(seq)*0.7)]
Dte=seq[int(len(seq)*0.7):len(seq)]
train_len=int(len(Dtr)/B)*B
test_len=int(len(Dte)/B)*B
Dtr,Dte=Dtr[:train_len],Dte[:test_len]
train=MyDataset(Dtr)
test=MyDataset(Dte)
Dtr=DataLoader(dataset=train,batch_size=B,shuffle=False,num_workers=0)
Dte=DataLoader(dataset=test,batch_size=B,shuffle=False,num_workers=0)
returnDtr,Dte
上面代碼用了DataLoader來對原始數(shù)據(jù)進行處理,最終得到了batch_size=B的數(shù)據(jù)集Dtr和Dte,Dtr為訓練集,Dte為測試集。
任意輸出Dte中的一條數(shù)據(jù):
[(tensor([[0.3513,0.0000,0.9091,0.0000,0.6667,0.3023,0.2439],
[0.3333,0.0000,0.9091,0.0435,0.6667,0.3023,0.2439],
[0.3396,0.0000,0.9091,0.0870,0.6667,0.3023,0.2439],
[0.3427,0.0000,0.9091,0.1304,0.6667,0.3023,0.2439],
[0.3838,0.0000,0.9091,0.1739,0.6667,0.3023,0.2439],
[0.3700,0.0000,0.9091,0.2174,0.6667,0.3023,0.2439],
[0.4288,0.0000,0.9091,0.2609,0.6667,0.3023,0.2439],
[0.4474,0.0000,0.9091,0.3043,0.6667,0.3023,0.2439],
[0.4406,0.0000,0.9091,0.3478,0.6667,0.3023,0.2439],
[0.4657,0.0000,0.9091,0.3913,0.6667,0.3023,0.2439],
[0.4540,0.0000,0.9091,0.4348,0.6667,0.3023,0.2439],
[0.4939,0.0000,0.9091,0.4783,0.6667,0.3023,0.2439],
[0.4328,0.0000,0.9091,0.5217,0.6667,0.3023,0.2439],
[0.4238,0.0000,0.9091,0.5652,0.6667,0.3023,0.2439],
[0.4779,0.0000,0.9091,0.6087,0.6667,0.3023,0.2439],
[0.4591,0.0000,0.9091,0.6522,0.6667,0.3023,0.2439],
[0.4651,0.0000,0.9091,0.6957,0.6667,0.3023,0.2439],
[0.5102,0.0000,0.9091,0.7391,0.6667,0.3023,0.2439],
[0.5067,0.0000,0.9091,0.7826,0.6667,0.3023,0.2439],
[0.4635,0.0000,0.9091,0.8261,0.6667,0.3023,0.2439],
[0.4224,0.0000,0.9091,0.8696,0.6667,0.3023,0.2439],
[0.3796,0.0000,0.9091,0.9130,0.6667,0.3023,0.2439],
[0.3292,0.0000,0.9091,0.9565,0.6667,0.3023,0.2439],
[0.2940,0.0000,0.9091,1.0000,0.6667,0.3023,0.2439]]),tensor([0.3675]))]
每一行對應(yīng)一個時刻點的負荷以及環(huán)境變量,此時input_size=7。
III.LSTM模型
這里采用了深入理解PyTorch中LSTM的輸入和輸出(從input輸入到Linear輸出)中的模型:
classLSTM(nn.Module):
def__init__(self,input_size,hidden_size,num_layers,output_size,batch_size):
super().__init__()
self.input_size=input_size
self.hidden_size=hidden_size
self.num_layers=num_layers
self.output_size=output_size
self.num_directions=1
self.batch_size=batch_size
self.lstm=nn.LSTM(self.input_size,self.hidden_size,self.num_layers,batch_first=True)
self.linear=nn.Linear(self.hidden_size,self.output_size)
defforward(self,input_seq):
h_0=torch.randn(self.num_directions*self.num_layers,self.batch_size,self.hidden_size).to(device)
c_0=torch.randn(self.num_directions*self.num_layers,self.batch_size,self.hidden_size).to(device)
#print(input_seq.size())
seq_len=input_seq.shape[1]
#input(batch_size,seq_len,input_size)
input_seq=input_seq.view(self.batch_size,seq_len,self.input_size)
#output(batch_size,seq_len,num_directions*hidden_size)
output,_=self.lstm(input_seq,(h_0,c_0))
#print('output.size=',output.size())
#print(self.batch_size*seq_len,self.hidden_size)
output=output.contiguous().view(self.batch_size*seq_len,self.hidden_size)#(5*30,64)
pred=self.linear(output)#pred()
#print('pred=',pred.shape)
pred=pred.view(self.batch_size,seq_len,-1)
pred=pred[:,-1,:]
returnpred
IV.訓練
defLSTM_train(name,b):
Dtr,Dte=nn_seq(file_name=name,B=b)
input_size,hidden_size,num_layers,output_size=7,64,1,1
model=LSTM(input_size,hidden_size,num_layers,output_size,batch_size=b).to(device)
loss_function=nn.MSELoss().to(device)
optimizer=torch.optim.Adam(model.parameters(),lr=0.05)
#訓練
epochs=30
foriinrange(epochs):
cnt=0
print('當前',i)
for(seq,label)inDtr:
cnt+=1
seq=seq.to(device)
label=label.to(device)
y_pred=model(seq)
loss=loss_function(y_pred,label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
ifcnt%100==0:
print('epoch',i,':',cnt-100,'~',cnt,loss.item())
state={'model':model.state_dict(),'optimizer':optimizer.state_dict()}
torch.save(state,LSTM_PATH)
V.測試
deftest(name,b):
globalMAX,MIN
Dtr,Dte=nn_seq(file_name=name,B=b)
pred=[]
y=[]
print('loadingmodel...')
input_size,hidden_size,num_layers,output_size=7,64,1,1
model=LSTM(input_size,hidden_size,num_layers,output_size,batch_size=b).to(device)
model.load_state_dict(torch.load(LSTM_PATH)['model'])
model.eval()
print('predicting...')
for(seq,target)inDte:
target=list(chain.from_iterable(target.data.tolist()))
y.extend(target)
seq=seq.to(device)
withtorch.no_grad():
y_pred=model(seq)
y_pred=list(chain.from_iterable(y_pred.data.tolist()))
pred.extend(y_pred)
y,pred=np.array([y]),np.array
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Gilvocarcin-E-生命科學試劑-MCE
- 2025標準版本房屋租賃合同示范文本
- 2025年智能路燈采購合同及技術(shù)協(xié)議
- 2025合同模板審計范本
- (高清版)DB13∕T 2988-2019 中國對蝦親蝦越冬技術(shù)規(guī)范
- 2025年安徽省滁州市明光市中考三模語文試題
- 第22課《偉大的悲劇》第二課時(教學設(shè)計)-七年級語文下冊同步備課系列(部編版)
- 快樂春游之旅寫景作文(6篇)
- 醫(yī)療行業(yè)藥品管理法規(guī)練習題
- 軟件開發(fā)工具與技術(shù)模擬試題
- 2025年1月國家開放大學漢語言文學本科《中國當代文學專題》期末紙質(zhì)考試試題及答案
- 宜良護理考試試題及答案
- 庭院綠化養(yǎng)護合同范文簡短
- 氬弧焊基礎(chǔ)知識培訓
- 3.3任務(wù)三小木屋的制作與優(yōu)化 教學設(shè)計 浙教版初中勞動技術(shù)七年級下冊
- 術(shù)后低蛋白血癥觀察及護理
- 電力營銷安全培訓
- 應(yīng)急預(yù)案中的應(yīng)急預(yù)警系統(tǒng)
- 2024新版人教PEP英語(2025春)七年級下冊教學課件:單元7Unit 7 Section A
- 2025年山西建設(shè)投資集團有限公司招聘筆試參考題庫含答案解析
- 兒童衛(wèi)生知識普及
評論
0/150
提交評論