




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆浙江省杭州市杭州風帆中學中考沖刺卷數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.計算(-1)×2的結(jié)果是()A.-2 B.-1 C.1 D.22.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),則該幾何體的左視圖是()A. B.C. D.3.甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地(轎車的平均速度大于貨車的平均速度),如圖線段OA和折線BCD分別表示兩車離甲地的距離y(單位:千米)與時間x(單位:小時)之間的函數(shù)關(guān)系.則下列說法正確的是()A.兩車同時到達乙地B.轎車在行駛過程中進行了提速C.貨車出發(fā)3小時后,轎車追上貨車D.兩車在前80千米的速度相等4.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標軸有3個不同交點;⑤邊長相等的多邊形內(nèi)角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.5.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm6.如圖,在矩形ABCD中,O為AC中點,EF過O點且EF⊥AC分別交DC于F,交AB于點E,點G是AE中點且∠AOG=30°,則下列結(jié)論正確的個數(shù)為(
)DC=3OG;(2)OG=BC;(3)△OGE是等邊三角形;(4).A.1 B.2 C.3 D.47.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.8.某微生物的直徑為0.000005035m,用科學記數(shù)法表示該數(shù)為()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣59.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關(guān)于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′10.如圖,G,E分別是正方形ABCD的邊AB,BC上的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個 B.3個 C.2個 D.1個二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等.若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A、B分別在l3、l2上,則tanα的值是______.12.如圖,在四邊形ABCD中,,AC、BD相交于點E,若,則______.13.如圖,Rt△ABC中,∠ACB=90°,D為AB的中點,F(xiàn)為CD上一點,且CF=CD,過點B作BE∥DC交AF的延長線于點E,BE=12,則AB的長為_____.14.若m、n是方程x2+2018x﹣1=0的兩個根,則m2n+mn2﹣mn=_________.15.一個不透明的口袋中有四個完全相同的小球,把它們分別標號為,隨機取出一個小球后不放回,再隨機取出一個小球,則兩次取出的小球標號的和等于4的概率是_____.16.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.三、解答題(共8題,共72分)17.(8分)如圖,在矩形紙片ABCD中,AB=6,BC=1.把△BCD沿對角線BD折疊,使點C落在C′處,BC′交AD于點G;E、F分別是C′D和BD上的點,線段EF交AD于點H,把△FDE沿EF折疊,使點D落在D′處,點D′恰好與點A重合.(1)求證:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的長.18.(8分)如圖平行四邊形ABCD中,對角線AC,BD交于點O,EF過點O,并與AD,BC分別交于點E,F(xiàn),已知AE=3,BF=5(1)求BC的長;(2)如果兩條對角線長的和是20,求三角形△AOD的周長.19.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.20.(8分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結(jié)果保留根號和π)21.(8分)先化簡,,其中x=.22.(10分)如圖,在航線l的兩側(cè)分別有觀測點A和B,點A到航線的距離為2km,點B位于點A北偏東60°方向且與A相距10km.現(xiàn)有一艘輪船從位于點B南偏西76°方向的C處,正沿該航線自西向東航行,5分鐘后該輪船行至點A的正北方向的D處.(1)求觀測點B到航線的距離;(2)求該輪船航行的速度(結(jié)果精確到0.1km/h).(參考數(shù)據(jù):≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)23.(12分)為了保障市民安全用水,我市啟動自來水管改造工程,該工程若甲隊單獨施工,恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的3倍.若甲、乙兩隊先合作施工45天,則余下的工程甲隊還需單獨施工23天才能完成.這項工程的規(guī)定時間是多少天?24.如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據(jù)兩數(shù)相乘,同號得正,異號得負,再把絕對值相乘計算即可.【詳解】-1×2=-故選A.【點睛】本題考查了有理數(shù)的乘法計算,解答本題的關(guān)鍵是熟練掌握有理數(shù)的乘法法則.2、D【解析】根據(jù)俯視圖中每列正方形的個數(shù),再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:
.故選D.3、B【解析】
①根據(jù)函數(shù)的圖象即可直接得出結(jié)論;②求得直線OA和DC的解析式,求得交點坐標即可;③由圖象無法求得B的橫坐標;④分別進行運算即可得出結(jié)論.【詳解】由題意和圖可得,轎車先到達乙地,故選項A錯誤,轎車在行駛過程中進行了提速,故選項B正確,貨車的速度是:300÷5=60千米/時,轎車在BC段對應的速度是:千米/時,故選項D錯誤,設貨車對應的函數(shù)解析式為y=kx,5k=300,得k=60,即貨車對應的函數(shù)解析式為y=60x,設CD段轎車對應的函數(shù)解析式為y=ax+b,,得,即CD段轎車對應的函數(shù)解析式為y=110x-195,令60x=110x-195,得x=3.9,即貨車出發(fā)3.9小時后,轎車追上貨車,故選項C錯誤,故選:B.【點睛】此題考查一次函數(shù)的應用,解題的關(guān)鍵在于利用題中信息列出函數(shù)解析式4、B【解析】∵①對頂角相等,故此選項正確;②若a>b>0,則<,故此選項正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項錯誤;④拋物線y=x2﹣2x與坐標軸有2個不同交點,故此選項錯誤;⑤邊長相等的多邊形內(nèi)角不一定都相等,故此選項錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.5、C【解析】
利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側(cè)面展開圖的弧長=;圓錐的底面周長等于側(cè)面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.6、C【解析】∵EF⊥AC,點G是AE中點,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等邊三角形,故(3)正確;設AE=2a,則OE=OG=a,由勾股定理得,AO=,∵O為AC中點,∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四邊形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正確;∵OG=a,BC=,∴OG≠BC,故(2)錯誤;∵S△AOE=a?=,SABCD=3a?=32,∴S△AOE=SABCD,故(4)正確;綜上所述,結(jié)論正確是(1)(3)(4)共3個,故選C.【點睛】本題考查了矩形的性質(zhì),等邊三角形的判定、勾股定理的應用等,正確地識圖,結(jié)合已知找到有用的條件是解答本題的關(guān)鍵.7、D【解析】
過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.8、A【解析】試題分析:0.000005035m,用科學記數(shù)法表示該數(shù)為5.035×10﹣6,故選A.考點:科學記數(shù)法—表示較小的數(shù).9、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關(guān)于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.10、C【解析】
由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯誤;故選:C.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識點的綜合運用,綜合比較強,難度較大.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】如圖,分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D.∵△ABC為等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.設平行線間距離為d=l,則CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.點睛:分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D,可根據(jù)ASA證明△ACE≌△CBF,設平行線間距離為d=1,進而求出AD、BD的值;本題考查了全等三角形的判定和銳角三角函數(shù),解題的關(guān)鍵是合理添加輔助線構(gòu)造全等三角形;12、【解析】
利用相似三角形的性質(zhì)即可求解;【詳解】解:∵AB∥CD,∴△AEB∽△CED,∴,∴,故答案為.【點睛】本題考查相似三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì).13、1.【解析】
根據(jù)三角形的性質(zhì)求解即可。【詳解】解:在Rt△ABC中,D為AB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得:AD=BD=CD,因為D為AB的中點,BE//DC,所以DF是△ABE的中位線,BE=2DF=12所以DF==6,設CD=x,由CF=CD,則DF==6,可得CD=9,故AD=BD=CD=9,故AB=1,故答案:1..【點睛】本題主要考查三角形基本概念,綜合運用三角形的知識可得答案。14、1【解析】
根據(jù)根與系數(shù)的關(guān)系得到m+n=﹣2018,mn=﹣1,把m2n+mm2﹣mn分解因式得到mn(m+n﹣1),然后利用整體代入的方法計算.【詳解】解:∵m、n是方程x2+2018x﹣1=0的兩個根,m+n=-2018,=﹣1×(﹣2018﹣1)=﹣1×(﹣1)=1,故答案為:1.【點睛】本題考查了根與系數(shù)的關(guān)系,如果一元二次方程ax2+bx+c=0的兩根分別為x1與x2,則15、【解析】試題解析:畫樹狀圖得:由樹狀圖可知:所有可能情況有12種,其中兩次摸出的小球標號的和等于4的占2種,所以其概率=,故答案為.16、【解析】【分析】如圖,作A關(guān)于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據(jù)相似三角形對應邊的比可得結(jié)論.【詳解】如圖,作A關(guān)于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【點睛】本題考查軸對稱﹣最短問題、三角形相似的性質(zhì)和判定、兩點之間線段最短、垂線段最短等知識,解題的關(guān)鍵是靈活運用軸對稱以及垂線段最短解決最短問題.三、解答題(共8題,共72分)17、(1)證明見解析(2)7/24(3)25/6【解析】(1)證明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。在△ABG≌△C′DG中,∵∠BAG=∠C,AB=C′D,∠ABG=∠ADC′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。設AG=x,則GB=1﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=?!?。(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD?!郒D=AD=4。∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位線?!郒F=AB=×6=3?!郋F=EH+HF=。(1)根據(jù)翻折變換的性質(zhì)可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出結(jié)論。(2)由(1)可知GD=GB,故AG+GB=AD,設AG=x,則GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的長,從而得出tan∠ABG的值。(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根據(jù)tan∠ABG的值即可得出EH的長,同理可得HF是△ABD的中位線,故可得出HF的長,由EF=EH+HF即可得出結(jié)果。18、(1)8;(2)1.【解析】
(1)由平行四邊形的性質(zhì)和已知條件易證△AOE≌△COF,所以可得AE=CF=3,進而可求出BC的長;(2)由平行四邊形的性質(zhì):對角線互相平分可求出AO+OD的長,進而可求出三角形△AOD的周長.【詳解】(1)∵四邊形ABCD是平行四邊形,∴AD∥BC,AO=CO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四邊形ABCD是平行四邊形,∴AO=CO,BO=DO,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD的周長=AO+BO+AD=1.【點睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定以及全等三角形的性質(zhì),能夠根據(jù)平行四邊形的性質(zhì)證明三角形全等,再根據(jù)全等三角形的性質(zhì)將所求的線段轉(zhuǎn)化為已知的線段是解題的關(guān)鍵.19、(1)(2).【解析】
(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.20、(1)證明見解析;(2)93﹣3π【解析】試題分析:(1)、連接OD,根據(jù)平行四邊形的性質(zhì)得出∠AOC=∠OBE,∠COD=∠ODB,結(jié)合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據(jù)題意得出△OBD為等邊三角形,根據(jù)等邊三角形的性質(zhì)得出EC=ED=BO=DB,根據(jù)Rt△AOC的勾股定理得出AC的長度,然后根據(jù)陰影部分的面積等于兩個△AOC的面積減去扇形OAD的面積得出答案.試題解析:(1)如圖連接OD.∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切線.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA?tan60°=3,∴S陰=2?S△AOC﹣S扇形OAD=2××3×3﹣120Π×32360=9﹣3π.21、【解析】
根據(jù)分式的化簡方法先通分再約分,然后帶入求值.【詳解】解:當時,.【點睛】此題重點考查學生對分式的化簡的應用,掌握分式的化簡方法是解題的關(guān)鍵.22、(1)觀測點到航線的距離為3km(2)該輪船航行的速度約為40.6km/h【解析】試題分析:(1)設AB與l交于點O,利用∠DAO=60°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國FM自動選臺收音機望遠鏡數(shù)據(jù)監(jiān)測研究報告
- 2025年中國BOPP鍍鋁膜數(shù)據(jù)監(jiān)測研究報告
- 2025年中國2、5-二甲基苯胺數(shù)據(jù)監(jiān)測報告
- 2025至2030年中國集中操作式電梯井筒模市場分析及競爭策略研究報告
- 2025至2030年中國鋁合金吸頂燈市場分析及競爭策略研究報告
- 2025至2030年中國茴香粉市場分析及競爭策略研究報告
- 2025至2030年中國砼攪拌站市場分析及競爭策略研究報告
- 2025至2030年中國電力控制開關(guān)柜市場分析及競爭策略研究報告
- 2025至2030年中國深溝外球面球軸承市場分析及競爭策略研究報告
- 2025至2030年中國汽車儲液器支架市場分析及競爭策略研究報告
- 初三勵志主題班會:初三第一次班會幻燈片PPT
- GB/T 42910-2023無機膠粘劑高溫壓縮剪切強度試驗方法
- 2022年江蘇省射陽中等專業(yè)學校招聘考試真題及答案
- 給攪拌站送石子合同范本
- 2023年副主任醫(yī)師(副高)-學校衛(wèi)生與兒少衛(wèi)生(副高)考試歷年真題集錦帶答案
- 法律基礎(第4版)PPT完整全套教學課件
- 倉管應聘求職簡歷表格
- 五年級下冊語文期末考試學霸奪冠解密卷人教部編版含答案
- 房屋加固工程監(jiān)理規(guī)劃
- 一級煙草專賣管理師理論考試題庫(含答案)
- von frey絲K值表完整版
評論
0/150
提交評論