徐州市銅山中學(xué)高三上學(xué)期期中考試數(shù)學(xué)試題_第1頁(yè)
徐州市銅山中學(xué)高三上學(xué)期期中考試數(shù)學(xué)試題_第2頁(yè)
徐州市銅山中學(xué)高三上學(xué)期期中考試數(shù)學(xué)試題_第3頁(yè)
徐州市銅山中學(xué)高三上學(xué)期期中考試數(shù)學(xué)試題_第4頁(yè)
徐州市銅山中學(xué)高三上學(xué)期期中考試數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩28頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精學(xué)必求其心得,業(yè)必貴于專精2017—2018學(xué)年度高三年級(jí)第一學(xué)期期中抽測(cè)數(shù)學(xué)一、填空題:本大題共14個(gè)小題,每小題5分,共70分.將答案填在答題紙上.1.設(shè)集合,,則.2.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則復(fù)數(shù)的實(shí)部為.3。函數(shù)的最小正周期為.4。已知一組數(shù)據(jù):87,,90,89,93的平均數(shù)為90,則該組數(shù)據(jù)的方差為.5.雙曲線的離心率為.6。從2個(gè)黃球,3個(gè)紅球中隨機(jī)取出兩個(gè)球,則兩球顏色不同的概率是.7。執(zhí)行如圖所示的算法流程圖,則輸出的值為.8.各棱長(zhǎng)都為2的正四棱錐的體積為.9.已知公差不為零的等差數(shù)列的前項(xiàng)和為,且,若成等比數(shù)列,則的值為.10。如圖,在半徑為2的扇形中,,為弧上的一點(diǎn),若,則的值為.11.已知函數(shù)(為自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)的取值范圍是.12。已知實(shí)數(shù)滿足,則的最小值為.13。已知是圓上的動(dòng)點(diǎn),點(diǎn),若直線上總存在點(diǎn),使點(diǎn)恰是線段的中點(diǎn),則實(shí)數(shù)的取值范圍是.14。已知函數(shù),若存在,使,則實(shí)數(shù)的取值范圍是.二、解答題(本大題共6小題,共90分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.)15.已知的內(nèi)角所對(duì)應(yīng)的邊分別為,且.(1)求角的大小;(2)若,,求的面積.16。如圖,在三棱錐中,,,為的中點(diǎn),為上一點(diǎn),且平面,求證:(1)直線平面;(2)平面平面.17。如圖,有一塊半圓形空地,開(kāi)發(fā)商計(jì)劃建一個(gè)矩形游泳池及其附屬設(shè)施,并將剩余空地進(jìn)行綠化,園林局要求綠化面積應(yīng)最大化,其中半圓的圓心為,半徑為,矩形的一邊在直線上,點(diǎn)在圓周上,在邊上,且,設(shè).(1)記游泳池及其附屬設(shè)施的占地面積為,求的表達(dá)式;(2)求符合園林局要求的的余弦值.18.如圖,在平面直角坐標(biāo)系中,橢圓的左頂點(diǎn)為,離心率為,過(guò)點(diǎn)的直線與橢圓交于另一點(diǎn),點(diǎn)為軸上的一點(diǎn)。(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形,求直線的方程。19。已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且。(1)求數(shù)列和的通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍。(3)是否存在正正數(shù),使成等差數(shù)列?若存在,求出所有滿足條件的;若不存在,請(qǐng)說(shuō)明理由。20。已知函數(shù)(,是自然對(duì)數(shù)的底數(shù)).(1)若函數(shù)在區(qū)間上是單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;(2)求函數(shù)的極值;(3)設(shè)函數(shù)圖像上任意一點(diǎn)處的切線為,求在軸上的截距的取值范圍.21.【選做題】本題包括A,B,C,D四小題,請(qǐng)選定其中兩小題,并在相應(yīng)的答題區(qū)域內(nèi)作答,若多做,則按作答的前兩小題評(píng)分,解答時(shí)應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.A.【選修4-1:幾何證明選講】如圖,是圓的切線,切點(diǎn)為,是過(guò)圓心的割線且交圓于點(diǎn),過(guò)作圓的切線交于點(diǎn),。求證:.B.【選修4—2:矩陣與變換】已知矩陣,若直線在矩陣對(duì)應(yīng)的變換作用下得到的直線過(guò)點(diǎn),求實(shí)數(shù)的值。C.【選修4—4:坐標(biāo)系與參數(shù)方程】在極坐標(biāo)系中,圓的方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,設(shè)直線的參數(shù)方程為(為參數(shù)),若直線與圓恒有公共點(diǎn),求實(shí)數(shù)的取值范圍.D.【選修4-5:不等式選講】設(shè)均為正數(shù),且,求證:?!颈刈鲱}】第22題、第23題,每題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。22.如圖,在三棱錐中,兩兩互相垂直,點(diǎn)分別為棱的中點(diǎn),在棱上,且滿足,已知,.(1)求異面直線與所成角的余弦值;(2)求二面角的正弦值.23。某同學(xué)在上學(xué)路上要經(jīng)過(guò)三個(gè)帶有紅綠燈的路口,已知他在三個(gè)路口遇到紅燈的概率依次是,遇到紅燈時(shí)停留的時(shí)間依次是40秒、20秒、80秒,且在各個(gè)路口是否遇到紅燈是相互獨(dú)立的.(1)求這名同學(xué)在上學(xué)路上在第三個(gè)路口時(shí)首次遇到紅燈的概率;(2)記這名同學(xué)在上學(xué)路上因遇到紅燈停留的總時(shí)間為隨機(jī)事件,求的概率分布與期望.試卷答案一、填空題1.2.3.64.5.6.7.48.9.8810.11.12.13.14.二、解答題15.(1)因?yàn)?由正弦定理,得.因?yàn)?,所以.即,所以.因?yàn)?,所以又因?yàn)?所以.(2)由余弦定理及得,,即.又因?yàn)?,所以,所以?6。(1)因?yàn)槠矫?,平面,平面平面,所以.因?yàn)槠矫?平面,所以平面.(2)因?yàn)闉榈闹悬c(diǎn),,所以為的中點(diǎn).又因?yàn)椋裕?,,所以.又平面,,所以平面.因?yàn)槠矫?所以平面平面.17.(1)由題意,,,且為等邊三角形,所以,,,.(2)要符合園林局的要求,只要最小,由(1)知,,令,即,解得或(舍去),令,,當(dāng)時(shí),是單調(diào)減函數(shù);當(dāng)時(shí),是單調(diào)增函數(shù),所以當(dāng)時(shí),取得最小值.答:符合園林局要求的的余弦值為。18.(1)由題意可得:即從而有,所以橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)直線的方程為,代入,得,因?yàn)闉樵摲匠痰囊粋€(gè)根,解得,設(shè),由,得:,即:由,即,得,即,即,所以或,當(dāng)時(shí),直線的方程為,當(dāng)時(shí),代入得,解得,此時(shí)直線的方程為.綜上,直線的方程為,.19.(1)當(dāng)時(shí),,所以.當(dāng)時(shí),,,兩式相減得,又,所以,從而數(shù)列為首項(xiàng),公比的等比數(shù)列,從而數(shù)列的通項(xiàng)公式為.由兩邊同除以,得,從而數(shù)列為首項(xiàng),公差的等差數(shù)列,所以,從而數(shù)列的通項(xiàng)公式為.(2)由(1)得,于是,所以,兩式相減得,所以,由(1)得,因?yàn)閷?duì),都有,即恒成立,所以恒成立,記,所以,因?yàn)?,從而?shù)列為遞增數(shù)列,所以當(dāng)時(shí),取最小值,于是.(3)假設(shè)存在正整數(shù),使()成等差數(shù)列,則,即,若為偶數(shù),則為奇數(shù),而為偶數(shù),上式不成立.若為奇數(shù),設(shè),則,于是,即,當(dāng)時(shí),,此時(shí)與矛盾;當(dāng)時(shí),上式左邊為奇數(shù),右邊為偶數(shù),顯然不成立.綜上所述,滿足條件的不存在.20.(1)函數(shù)的導(dǎo)函數(shù),則在區(qū)間上恒成立,且等號(hào)不恒成立,又,所以在區(qū)間上恒成立,記,只需,即解得.經(jīng)檢驗(yàn),時(shí),是上的單調(diào)減函數(shù),又,所以實(shí)數(shù)的取值范圍是.(2)由,得,①當(dāng)時(shí),有;,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在取得極大值,沒(méi)有極小值.②當(dāng)時(shí),有;,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在取得極小值,沒(méi)有極大值.綜上可知:當(dāng)時(shí),函數(shù)在取得極大值,沒(méi)有極小值;當(dāng)時(shí),函數(shù)在取得極小值,沒(méi)有極大值.(3)設(shè)切點(diǎn)為,則曲線在點(diǎn)處的切線方程為,當(dāng)時(shí),切線的方程為,其在軸上的截距不存在.當(dāng)時(shí),令,得切線在軸上的截距為,令,,考慮函數(shù),則,列表如下:↗極大值↘↘極小值↗所以.故切線在軸上的截距的取值范圍是.?dāng)?shù)學(xué)Ⅱ(附加題)參考答案21A.∵是圓的切線,∴,連結(jié),則,∵是圓的切線,∴,又,∴,∴,則,而,∴,∴,由得,代入得,故.21B.矩陣,得,所以,將點(diǎn)代入直線得。21C.由(為參數(shù)),可得直線的普通方程為,由得,所以,圓的標(biāo)準(zhǔn)方程為,因?yàn)橹本€與圓恒有公共點(diǎn),所以,又因?yàn)?,所以,解之?所以,實(shí)數(shù)的取值范圍為.21D.證明:因?yàn)?,所以,因?yàn)?當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以.22.(1)如圖,以為原點(diǎn),分別以方向?yàn)檩S、軸、軸正方向建立空間直角坐標(biāo)系。依題意可得:,,,,,,所以,,所以.因此異面直線與所成角的余弦值為。(2)平面的一個(gè)法向量為.設(shè)為平面的一個(gè)法向量,又,則即不妨取,則,所以為平面的一個(gè)法向量,從而,設(shè)二面角的大小為,則.因?yàn)?,所?因此二面角的正弦值為。23.(1)設(shè)這名同學(xué)在上學(xué)路上在第三個(gè)路口時(shí)首次遇到紅燈為事件,因?yàn)槭录扔谑录斑@名同學(xué)在第一和第二個(gè)路口沒(méi)有遇到紅燈,在第三個(gè)路口遇到紅燈”,所以.答:這名同學(xué)在上學(xué)路上在第三個(gè)路口時(shí)首次遇到紅燈的概率為。(2)的所有可能取值為0,40,20,80,60,100,120,140(單位:秒).的分布列是:;;;;;;;。所以.

徐州市2017—2018學(xué)年度高三年級(jí)摸底考試數(shù)學(xué)I參考答案一、填空題1.2.3.64.5.6.7.48.9.8810.11.12.13.14.二、解答題15.(1)因?yàn)?由正弦定理,得.················2分因?yàn)?,所以.即,所以.···························································································?分因?yàn)?,所以.···············································································?分又因?yàn)?,所以.··············································································?分(2)由余弦定理及得,,即.··································································································10分又因?yàn)?所以,····················································································12分所以.·································································14分16。(1)因?yàn)槠矫?,平?平面平面,所以.·························································3分因?yàn)槠矫?,平?所以平面.···························································································6分(2)因?yàn)闉榈闹悬c(diǎn),,所以為的中點(diǎn).又因?yàn)椋?,···········································································?分又,,所以.···························································10分又平面,,所以平面.···························································································12分因?yàn)槠矫?,所以平面平面.···········································?4分17.(1)由題意,,,且為等邊三角形,所以,,·····································································2分,.····················································6分(2)要符合園林局的要求,只要最小,由(1)知,,令,即,解得或(舍去),·························································10分令,,當(dāng)時(shí),是單調(diào)減函數(shù);當(dāng)時(shí),是單調(diào)增函數(shù),所以當(dāng)時(shí),取得最小值.答:符合園林局要求的的余弦值為?!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ?4分18.(1)由題意可得:即從而有,所以橢圓的標(biāo)準(zhǔn)方程為:.····································································4分(2)設(shè)直線的方程為,代入,得,因?yàn)闉樵摲匠痰囊粋€(gè)根,解得,·······································6分設(shè),由,得:,即:····························································10分由,即,得,即,即,所以或,··························································································14分當(dāng)時(shí),直線的方程為,當(dāng)時(shí),代入得,解得,此時(shí)直線的方程為。綜上,直線的方程為,。··························································16分19.(1)當(dāng)時(shí),,所以.當(dāng)時(shí),,,兩式相減得,又,所以,從而數(shù)列為首項(xiàng),公比的等比數(shù)列,從而數(shù)列的通項(xiàng)公式為.由兩邊同除以,得,從而數(shù)列為首項(xiàng),公差的等差數(shù)列,所以,從而數(shù)列的通項(xiàng)公式為.·····························································4分(2)由(1)得,于是,所以,兩式相減得,所以,由(1)得,·················································································8分因?yàn)閷?duì),都有,即恒成立,所以恒成立,記,所以,············································································································10分因?yàn)?從而數(shù)列為遞增數(shù)列,所以當(dāng)時(shí),取最小值,于是.······················································12分(3)假設(shè)存在正整數(shù),使()成等差數(shù)列,則,即,若為偶數(shù),則為奇數(shù),而為偶數(shù),上式不成立。若為奇數(shù),設(shè),則,于是,即,當(dāng)時(shí),,此時(shí)與矛盾;當(dāng)時(shí),上式左邊為奇數(shù),右邊為偶數(shù),顯然不成立。綜上所述,滿足條件的不存在.····································································16分20.(1)函數(shù)的導(dǎo)函數(shù),則在區(qū)間上恒成立,且等號(hào)不恒成立,(表述不對(duì)吧,可以去掉,后面再檢驗(yàn)?)又,所以在區(qū)間上恒成立,·········································2分記,只需即解得.經(jīng)檢驗(yàn),時(shí),是上的單調(diào)減函數(shù),又,所以實(shí)數(shù)的取值范圍是.··············································4分我的機(jī)子這題答案后三行亂碼,答案我算的是a小于三分之一,原答案忽略了0(2)由,得,①當(dāng)時(shí),有;,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在取得極大值,沒(méi)有極小值.②當(dāng)時(shí),有;,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在取得極小值,沒(méi)有極大值.綜上可知:當(dāng)時(shí),函數(shù)在取得極大值,沒(méi)有極小值;當(dāng)時(shí),函數(shù)在取得極小值,沒(méi)有極大值.·········································································································································10分(3)設(shè)切點(diǎn)為,則曲線在點(diǎn)處的切線方程為,當(dāng)時(shí),切線的方程為,其在軸上的截距不存在.當(dāng)時(shí),令,得切線在軸上的截距為,············································································12分令,,考慮函數(shù),則,列表如下:↗極大值↘↘極小值↗所以.故切線在軸上的截距的取值范圍是.······························16分

徐州市2017—2018學(xué)年度高三年級(jí)摸底考試(第21(A)(第21(A)題)21A.∵是圓的切線,∴,連結(jié),則,∵是圓的切線,∴,又,∴,∴,則,而,∴,∴,································5分由得,代入得,故.···················································································10分21B.矩陣,得,·························································5分所以,將點(diǎn)代入直線得?!ぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁぁ?0分21C.由(為參數(shù)),可得直線的普通方程為,由得,所以,圓的標(biāo)準(zhǔn)方程為,·························································5分因?yàn)橹本€與圓恒有公共點(diǎn),所以,又因?yàn)?所以,解之得,所以,實(shí)數(shù)的取值范圍為.·······

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論