喀什職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)應(yīng)用實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
喀什職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)應(yīng)用實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
喀什職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)應(yīng)用實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
喀什職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)應(yīng)用實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁(yè),共1頁(yè)喀什職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)應(yīng)用實(shí)訓(xùn)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,預(yù)測(cè)模型的穩(wěn)定性和可靠性是重要的考慮因素。假設(shè)要評(píng)估一個(gè)預(yù)測(cè)模型在不同時(shí)間段和不同數(shù)據(jù)集上的表現(xiàn),以下關(guān)于模型穩(wěn)定性和可靠性的描述,哪一項(xiàng)是不正確的?()A.可以通過(guò)多次重復(fù)實(shí)驗(yàn)和交叉驗(yàn)證來(lái)評(píng)估模型的穩(wěn)定性B.模型在不同數(shù)據(jù)集上的性能差異較大,說(shuō)明模型的可靠性較低C.只要模型在訓(xùn)練集上表現(xiàn)良好,就可以認(rèn)為模型是穩(wěn)定和可靠的D.對(duì)模型進(jìn)行監(jiān)控和更新,以適應(yīng)數(shù)據(jù)的變化和新的業(yè)務(wù)需求2、在數(shù)據(jù)分析中,模型的過(guò)擬合和欠擬合是常見(jiàn)的問(wèn)題。假設(shè)要訓(xùn)練一個(gè)預(yù)測(cè)房?jī)r(jià)的模型,以下關(guān)于防止過(guò)擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個(gè)數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過(guò)擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化3、在進(jìn)行數(shù)據(jù)清洗時(shí),發(fā)現(xiàn)數(shù)據(jù)存在重復(fù)記錄。以下哪種方法可以有效地去除重復(fù)記錄?()A.手動(dòng)篩選B.使用數(shù)據(jù)庫(kù)的去重功能C.隨機(jī)刪除一部分重復(fù)記錄D.對(duì)重復(fù)記錄進(jìn)行合并4、數(shù)據(jù)分析中,選擇合適的可視化方法能夠更有效地傳達(dá)數(shù)據(jù)中的信息。假設(shè)你要展示不同地區(qū)在過(guò)去十年間的人口增長(zhǎng)趨勢(shì)。以下關(guān)于可視化方法的選擇,哪一項(xiàng)是最合適的?()A.使用餅圖來(lái)展示每個(gè)地區(qū)在特定年份的人口占比B.運(yùn)用折線圖來(lái)呈現(xiàn)各地區(qū)人口隨時(shí)間的變化情況C.借助柱狀圖比較不同地區(qū)在同一時(shí)間點(diǎn)的人口數(shù)量D.選擇散點(diǎn)圖來(lái)分析人口增長(zhǎng)與其他因素的關(guān)系5、數(shù)據(jù)分析中的異常檢測(cè)用于識(shí)別數(shù)據(jù)中的異常值或異常模式。假設(shè)你在分析一家公司的財(cái)務(wù)數(shù)據(jù),以檢測(cè)可能的欺詐行為。以下關(guān)于異常檢測(cè)方法的選擇,哪一項(xiàng)是最具挑戰(zhàn)性的?()A.基于統(tǒng)計(jì)的方法,如設(shè)定閾值來(lái)判斷異常B.利用機(jī)器學(xué)習(xí)算法,如孤立森林,自動(dòng)識(shí)別異常C.結(jié)合領(lǐng)域知識(shí)和人工判斷來(lái)確定異常D.完全依賴數(shù)據(jù)的直觀觀察來(lái)發(fā)現(xiàn)異常6、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的挑戰(zhàn)有很多,其中數(shù)據(jù)質(zhì)量問(wèn)題是一個(gè)重要的挑戰(zhàn)。以下關(guān)于數(shù)據(jù)質(zhì)量問(wèn)題的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量問(wèn)題可能會(huì)導(dǎo)致數(shù)據(jù)挖掘結(jié)果的錯(cuò)誤和不可靠B.數(shù)據(jù)質(zhì)量問(wèn)題可以通過(guò)數(shù)據(jù)清洗和驗(yàn)證等方法來(lái)解決C.數(shù)據(jù)質(zhì)量問(wèn)題只與數(shù)據(jù)的來(lái)源有關(guān),與數(shù)據(jù)挖掘的算法和技術(shù)無(wú)關(guān)D.數(shù)據(jù)質(zhì)量問(wèn)題需要在數(shù)據(jù)挖掘的整個(gè)過(guò)程中進(jìn)行關(guān)注和處理7、在處理多變量數(shù)據(jù)時(shí),降維技術(shù)可以幫助我們簡(jiǎn)化分析。假設(shè)我們有一個(gè)包含多個(gè)相關(guān)變量的數(shù)據(jù)集,以下哪種降維技術(shù)可以保留數(shù)據(jù)的局部結(jié)構(gòu)?()A.主成分分析(PCA)B.線性判別分析(LDA)C.t分布隨機(jī)鄰域嵌入(t-SNE)D.局部線性嵌入(LLE)8、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架能夠提高計(jì)算效率。假設(shè)我們有海量的用戶行為數(shù)據(jù)需要進(jìn)行分析,以下哪個(gè)分布式計(jì)算框架在處理這種數(shù)據(jù)時(shí)可能具有優(yōu)勢(shì)?()A.HadoopB.SparkC.FlinkD.以上都是9、在數(shù)據(jù)分析中,選擇合適的數(shù)據(jù)分析方法至關(guān)重要。關(guān)于描述性統(tǒng)計(jì)分析和推斷性統(tǒng)計(jì)分析,以下敘述不正確的是()A.描述性統(tǒng)計(jì)分析主要用于對(duì)數(shù)據(jù)的集中趨勢(shì)、離散程度和分布形態(tài)進(jìn)行描述和總結(jié)B.推斷性統(tǒng)計(jì)分析則是基于樣本數(shù)據(jù)對(duì)總體特征進(jìn)行估計(jì)和假設(shè)檢驗(yàn)C.描述性統(tǒng)計(jì)分析只能提供數(shù)據(jù)的基本信息,對(duì)于深入了解數(shù)據(jù)的內(nèi)在規(guī)律和關(guān)系作用有限D(zhuǎn).在實(shí)際應(yīng)用中,通常先進(jìn)行描述性統(tǒng)計(jì)分析,然后根據(jù)研究目的和數(shù)據(jù)特點(diǎn)選擇是否進(jìn)行推斷性統(tǒng)計(jì)分析10、在數(shù)據(jù)分析中,數(shù)據(jù)分析的流程包括多個(gè)步驟,其中問(wèn)題定義是第一個(gè)步驟。以下關(guān)于問(wèn)題定義的描述中,錯(cuò)誤的是?()A.問(wèn)題定義應(yīng)該明確數(shù)據(jù)分析的目的和需求B.問(wèn)題定義應(yīng)該考慮數(shù)據(jù)的可用性和可獲取性C.問(wèn)題定義應(yīng)該確定數(shù)據(jù)分析的方法和工具D.問(wèn)題定義可以根據(jù)需要進(jìn)行調(diào)整和修改,以適應(yīng)不同的情況11、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行分組統(tǒng)計(jì),以下哪個(gè)函數(shù)在Python中經(jīng)常被使用?()A.groupby()B.merge()C.concat()D.pivot_table()12、數(shù)據(jù)分析中的數(shù)據(jù)挖掘技術(shù)常用于發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和關(guān)系。假設(shè)要從一個(gè)大型電商網(wǎng)站的用戶購(gòu)買記錄中挖掘出用戶的購(gòu)買行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷。以下哪種數(shù)據(jù)挖掘算法在處理這種大規(guī)模交易數(shù)據(jù)時(shí)更有可能發(fā)現(xiàn)有價(jià)值的信息?()A.決策樹(shù)算法B.關(guān)聯(lián)規(guī)則挖掘算法C.聚類算法D.神經(jīng)網(wǎng)絡(luò)算法13、在處理大數(shù)據(jù)集時(shí),分布式計(jì)算框架可以提高計(jì)算效率。假設(shè)要對(duì)海量的用戶行為數(shù)據(jù)進(jìn)行分析,以下關(guān)于分布式計(jì)算框架選擇的描述,正確的是:()A.不考慮數(shù)據(jù)規(guī)模和計(jì)算需求,隨意選擇一個(gè)分布式框架B.選擇一個(gè)復(fù)雜但功能強(qiáng)大的分布式框架,不考慮團(tuán)隊(duì)的技術(shù)能力和維護(hù)成本C.根據(jù)數(shù)據(jù)特點(diǎn)、計(jì)算任務(wù)和團(tuán)隊(duì)技術(shù)水平,選擇合適的分布式計(jì)算框架,如Hadoop、Spark等,并進(jìn)行合理的配置和優(yōu)化D.認(rèn)為分布式計(jì)算框架可以解決所有性能問(wèn)題,不關(guān)注數(shù)據(jù)的分區(qū)和并行處理策略14、在數(shù)據(jù)挖掘中,若要預(yù)測(cè)客戶的購(gòu)買行為,以下哪種方法可能會(huì)被采用?()A.分類算法B.回歸算法C.關(guān)聯(lián)規(guī)則挖掘D.以上都有可能15、在數(shù)據(jù)可視化中,顏色的選擇和使用對(duì)于傳達(dá)信息有重要影響。假設(shè)要在一個(gè)圖表中突出顯示關(guān)鍵數(shù)據(jù),以下哪種顏色搭配策略可能是最有效的?()A.使用鮮艷的對(duì)比色B.使用相近的柔和色C.隨機(jī)選擇顏色D.只使用一種顏色16、在進(jìn)行數(shù)據(jù)可視化時(shí),如果數(shù)據(jù)的量級(jí)差異較大,為了更清晰地展示數(shù)據(jù)分布,以下哪種處理方式較為合適?()A.使用相同的坐標(biāo)軸刻度B.對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理C.只展示部分?jǐn)?shù)據(jù)D.采用多個(gè)圖表分別展示17、在進(jìn)行數(shù)據(jù)分析時(shí),發(fā)現(xiàn)數(shù)據(jù)集中存在一些離群點(diǎn)。對(duì)于離群點(diǎn)的處理,以下哪種方法較為恰當(dāng)?()A.直接刪除B.視為異常值,進(jìn)行特殊分析C.用平均值替代D.忽略不管18、在數(shù)據(jù)挖掘中,關(guān)聯(lián)規(guī)則挖掘是一種常見(jiàn)的方法。以下關(guān)于關(guān)聯(lián)規(guī)則的描述,正確的是:()A.關(guān)聯(lián)規(guī)則只能用于發(fā)現(xiàn)商品之間的購(gòu)買關(guān)聯(lián)B.支持度表示同時(shí)購(gòu)買兩種商品的顧客比例C.置信度越高,說(shuō)明規(guī)則的可靠性越強(qiáng)D.提升度小于1時(shí),表示兩種商品存在負(fù)相關(guān)關(guān)系19、數(shù)據(jù)分析中,數(shù)據(jù)可視化的作用不僅僅是美觀。以下關(guān)于數(shù)據(jù)可視化作用的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù),發(fā)現(xiàn)數(shù)據(jù)中的規(guī)律和趨勢(shì)B.數(shù)據(jù)可視化可以提高數(shù)據(jù)分析的效率,減少分析時(shí)間和成本C.數(shù)據(jù)可視化可以增強(qiáng)數(shù)據(jù)的說(shuō)服力和影響力,使分析結(jié)果更容易被接受D.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)分析報(bào)告看起來(lái)更漂亮,對(duì)分析結(jié)果沒(méi)有實(shí)質(zhì)性的幫助20、在數(shù)據(jù)分析的方差分析(ANOVA)中,以下關(guān)于組間方差和組內(nèi)方差的描述,錯(cuò)誤的是()A.組間方差反映了不同組之間的差異B.組內(nèi)方差反映了組內(nèi)個(gè)體之間的差異C.如果組間方差顯著大于組內(nèi)方差,說(shuō)明不同組之間存在顯著差異D.組間方差和組內(nèi)方差的比值越大,越說(shuō)明組間差異不顯著21、數(shù)據(jù)分析在金融領(lǐng)域有著廣泛的應(yīng)用。假設(shè)一家銀行要評(píng)估客戶的信用風(fēng)險(xiǎn)。以下關(guān)于數(shù)據(jù)分析在金融中的描述,哪一項(xiàng)是不正確的?()A.可以建立信用評(píng)分模型,預(yù)測(cè)客戶違約的可能性B.分析市場(chǎng)趨勢(shì),制定投資策略C.數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用完全沒(méi)有風(fēng)險(xiǎn),不會(huì)導(dǎo)致錯(cuò)誤的決策D.監(jiān)測(cè)金融交易,防范欺詐行為22、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的層次結(jié)構(gòu),以下哪種圖表較為合適?()A.樹(shù)形圖B.旭日?qǐng)DC.和弦圖D.以上都是23、當(dāng)分析一組時(shí)間序列數(shù)據(jù)時(shí),發(fā)現(xiàn)數(shù)據(jù)存在明顯的季節(jié)性波動(dòng)。為了消除季節(jié)性影響,應(yīng)該采用哪種方法?()A.移動(dòng)平均B.指數(shù)平滑C.季節(jié)指數(shù)法D.線性回歸24、在數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量是一個(gè)關(guān)鍵問(wèn)題。以下關(guān)于數(shù)據(jù)質(zhì)量的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量包括數(shù)據(jù)的準(zhǔn)確性、完整性、一致性和時(shí)效性等方面B.數(shù)據(jù)質(zhì)量問(wèn)題可能會(huì)導(dǎo)致數(shù)據(jù)分析結(jié)果的錯(cuò)誤和不可靠C.提高數(shù)據(jù)質(zhì)量可以通過(guò)數(shù)據(jù)清洗、數(shù)據(jù)驗(yàn)證和數(shù)據(jù)監(jiān)控等方法來(lái)實(shí)現(xiàn)D.數(shù)據(jù)質(zhì)量只與數(shù)據(jù)的來(lái)源有關(guān),與數(shù)據(jù)分析的方法和工具無(wú)關(guān)25、數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的擴(kuò)展性是滿足未來(lái)需求的關(guān)鍵。以下關(guān)于數(shù)據(jù)倉(cāng)庫(kù)擴(kuò)展性的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)倉(cāng)庫(kù)的擴(kuò)展性應(yīng)考慮數(shù)據(jù)量的增長(zhǎng)、業(yè)務(wù)需求的變化和技術(shù)的發(fā)展等因素B.數(shù)據(jù)倉(cāng)庫(kù)的擴(kuò)展性可以通過(guò)分布式架構(gòu)、云計(jì)算等技術(shù)來(lái)實(shí)現(xiàn)C.數(shù)據(jù)倉(cāng)庫(kù)的擴(kuò)展性只需要在建設(shè)初期進(jìn)行規(guī)劃,后期不需要再進(jìn)行調(diào)整D.數(shù)據(jù)倉(cāng)庫(kù)的擴(kuò)展性應(yīng)保證系統(tǒng)的性能和穩(wěn)定性,不會(huì)因?yàn)閿U(kuò)展而降低26、假設(shè)我們要評(píng)估一個(gè)分類模型的性能,除了準(zhǔn)確率外,以下哪個(gè)指標(biāo)還能反映模型對(duì)于不同類別的區(qū)分能力?()A.召回率B.F1值C.均方誤差D.混淆矩陣27、對(duì)于一個(gè)具有大量數(shù)據(jù)的數(shù)據(jù)庫(kù),若要提高查詢效率,以下哪種技術(shù)可能會(huì)被使用?()A.緩存B.分區(qū)C.索引優(yōu)化D.以上都是28、數(shù)據(jù)可視化是數(shù)據(jù)分析的重要手段之一。以下關(guān)于數(shù)據(jù)可視化的作用,不準(zhǔn)確的是()A.數(shù)據(jù)可視化能夠?qū)?fù)雜的數(shù)據(jù)以直觀、易懂的圖形和圖表形式呈現(xiàn),幫助人們快速理解數(shù)據(jù)的含義和趨勢(shì)B.通過(guò)數(shù)據(jù)可視化,可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式、異常值和關(guān)系,為進(jìn)一步的分析提供線索C.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來(lái)更美觀,對(duì)于數(shù)據(jù)分析的實(shí)質(zhì)內(nèi)容沒(méi)有太大幫助D.好的數(shù)據(jù)可視化能夠有效地傳達(dá)信息,支持決策制定,并與他人分享分析結(jié)果29、對(duì)于一個(gè)具有時(shí)間序列特征的數(shù)據(jù)集合,若要進(jìn)行預(yù)測(cè),以下哪種模型可能會(huì)考慮時(shí)間的滯后效應(yīng)?()A.自回歸移動(dòng)平均模型B.支持向量回歸模型C.隨機(jī)森林回歸模型D.以上都可能30、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具和技術(shù)有很多,其中Python是一種常用的編程語(yǔ)言。以下關(guān)于Python在數(shù)據(jù)可視化中的作用,錯(cuò)誤的是?()A.Python可以使用各種數(shù)據(jù)可視化庫(kù),如Matplotlib、Seaborn等,進(jìn)行數(shù)據(jù)可視化B.Python可以進(jìn)行數(shù)據(jù)的處理和分析,為數(shù)據(jù)可視化提供數(shù)據(jù)支持C.Python的數(shù)據(jù)可視化功能強(qiáng)大,可以制作各種復(fù)雜的圖表和圖形D.Python只適用于專業(yè)的數(shù)據(jù)分析師,對(duì)于非專業(yè)用戶來(lái)說(shuō)難以掌握二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在醫(yī)療數(shù)據(jù)的隱私保護(hù)中,分析如何在進(jìn)行數(shù)據(jù)分析的同時(shí),采用加密技術(shù)、匿名化處理等方法確?;颊邤?shù)據(jù)的安全性和隱私性。2、(本題5分)在物流企業(yè)的成本管理中,如何利用數(shù)據(jù)分析來(lái)降低運(yùn)輸成本、倉(cāng)儲(chǔ)成本和運(yùn)營(yíng)成本?請(qǐng)深入探討成本數(shù)據(jù)的收集和分析方法,以及基于數(shù)據(jù)分析的成本控制策略和效果評(píng)估。3、(本題5分)在制造業(yè)的質(zhì)量控制中,數(shù)據(jù)分析可以提前發(fā)現(xiàn)質(zhì)量問(wèn)題和優(yōu)化生產(chǎn)流程。以某電子產(chǎn)品制造企業(yè)為例,闡述如何通過(guò)數(shù)據(jù)分析來(lái)監(jiān)控生產(chǎn)過(guò)程中的質(zhì)量指標(biāo)、分析質(zhì)量缺陷的原因、采取預(yù)防措施,以及如何利用數(shù)據(jù)驅(qū)動(dòng)的質(zhì)量改進(jìn)方法降低次品率。4、(本題5分)在物流配送中,如何借助數(shù)據(jù)分析來(lái)優(yōu)化配送路線、降低運(yùn)輸成本和提高配送準(zhǔn)時(shí)率?請(qǐng)?jiān)敿?xì)分析數(shù)據(jù)的采集和處理方式,以及可能遇到的交通、天氣等因素的干擾。5、(本題5分)在汽車金融服務(wù)領(lǐng)域,車輛貸款數(shù)據(jù)、客戶信用數(shù)據(jù)等不斷豐富。探討如何利用數(shù)據(jù)分析方法,比如貸款違約預(yù)測(cè)、客戶風(fēng)險(xiǎn)評(píng)估等,優(yōu)化汽車金融服務(wù),同時(shí)研究在數(shù)據(jù)質(zhì)量參差不齊、金融政策變化和市場(chǎng)競(jìng)爭(zhēng)激烈方面所面臨的困難及解決途徑。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋數(shù)據(jù)倉(cāng)庫(kù)中的索引優(yōu)化策略,說(shuō)明如何選擇合適的索引來(lái)提高數(shù)據(jù)查詢性能,并舉例說(shuō)明。2、(本題5分)闡述數(shù)據(jù)挖掘中的圖像挖掘,包括圖像分類、目標(biāo)檢測(cè)等,說(shuō)明其技術(shù)和應(yīng)用場(chǎng)景。3、(本題5分)闡述數(shù)據(jù)分析中的模型融合中的Stacking方法的原理和步驟,并舉例說(shuō)明如何通過(guò)Stacking

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論