嵩山少林武術(shù)職業(yè)學(xué)院《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
嵩山少林武術(shù)職業(yè)學(xué)院《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
嵩山少林武術(shù)職業(yè)學(xué)院《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁(yè),共1頁(yè)嵩山少林武術(shù)職業(yè)學(xué)院

《數(shù)據(jù)挖掘?qū)崙?zhàn)》2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的模型評(píng)估不僅包括在訓(xùn)練集上的表現(xiàn),還需要在測(cè)試集上進(jìn)行驗(yàn)證。假設(shè)我們?cè)谟?xùn)練一個(gè)模型時(shí),發(fā)現(xiàn)訓(xùn)練集上的準(zhǔn)確率很高,但測(cè)試集上的準(zhǔn)確率很低,以下哪種情況可能導(dǎo)致了這種過擬合現(xiàn)象?()A.模型過于復(fù)雜B.訓(xùn)練數(shù)據(jù)量不足C.特征選擇不當(dāng)D.以上都是2、數(shù)據(jù)可視化是數(shù)據(jù)分析的重要手段之一。以下關(guān)于數(shù)據(jù)可視化的作用,不準(zhǔn)確的是()A.數(shù)據(jù)可視化能夠?qū)?fù)雜的數(shù)據(jù)以直觀、易懂的圖形和圖表形式呈現(xiàn),幫助人們快速理解數(shù)據(jù)的含義和趨勢(shì)B.通過數(shù)據(jù)可視化,可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式、異常值和關(guān)系,為進(jìn)一步的分析提供線索C.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來更美觀,對(duì)于數(shù)據(jù)分析的實(shí)質(zhì)內(nèi)容沒有太大幫助D.好的數(shù)據(jù)可視化能夠有效地傳達(dá)信息,支持決策制定,并與他人分享分析結(jié)果3、數(shù)據(jù)分析中的生存分析常用于研究事件發(fā)生的時(shí)間。假設(shè)我們要研究患者接受某種治療后疾病復(fù)發(fā)的時(shí)間,以下哪個(gè)概念是生存分析中的關(guān)鍵指標(biāo)?()A.生存函數(shù)B.風(fēng)險(xiǎn)函數(shù)C.中位生存時(shí)間D.以上都是4、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示數(shù)據(jù)的分布情況,以下哪種圖表最為合適?()A.折線圖B.柱狀圖C.箱線圖D.餅圖5、數(shù)據(jù)分析在當(dāng)今的各個(gè)領(lǐng)域都發(fā)揮著重要作用。在數(shù)據(jù)收集階段,以下關(guān)于數(shù)據(jù)質(zhì)量的描述,不準(zhǔn)確的是()A.數(shù)據(jù)質(zhì)量包括準(zhǔn)確性、完整性、一致性和時(shí)效性等多個(gè)方面B.高質(zhì)量的數(shù)據(jù)能夠?yàn)楹罄m(xù)的分析提供可靠的基礎(chǔ),確保分析結(jié)果的有效性C.數(shù)據(jù)收集時(shí)只需要關(guān)注數(shù)據(jù)的數(shù)量,質(zhì)量問題可以在后續(xù)的分析中進(jìn)行處理和修正D.為了保證數(shù)據(jù)質(zhì)量,需要在收集過程中制定明確的數(shù)據(jù)標(biāo)準(zhǔn)和規(guī)范,并進(jìn)行有效的數(shù)據(jù)驗(yàn)證6、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)指標(biāo)能有效描述數(shù)據(jù)特征。假設(shè)要分析一組學(xué)生考試成績(jī)的集中趨勢(shì)和離散程度,以下關(guān)于統(tǒng)計(jì)指標(biāo)選擇的描述,正確的是:()A.僅使用平均數(shù)來描述成績(jī)的集中趨勢(shì),忽略中位數(shù)和眾數(shù)B.用方差衡量離散程度,但不考慮標(biāo)準(zhǔn)差C.同時(shí)采用平均數(shù)、中位數(shù)和眾數(shù)來描述集中趨勢(shì),并結(jié)合標(biāo)準(zhǔn)差和方差衡量離散程度D.隨意選擇一個(gè)統(tǒng)計(jì)指標(biāo),不考慮其適用場(chǎng)景和數(shù)據(jù)特點(diǎn)7、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),數(shù)據(jù)標(biāo)準(zhǔn)化或歸一化是常見的操作。假設(shè)要對(duì)一組包含不同量綱的特征數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化,以下哪種方法可能是最常用的?()A.最小-最大標(biāo)準(zhǔn)化B.Z-score標(biāo)準(zhǔn)化C.小數(shù)定標(biāo)標(biāo)準(zhǔn)化D.以上方法使用頻率相同8、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),發(fā)現(xiàn)某個(gè)月的銷售額異常高。在進(jìn)一步分析時(shí),首先應(yīng)該考慮的因素是?()A.促銷活動(dòng)B.數(shù)據(jù)錄入錯(cuò)誤C.市場(chǎng)需求突然增加D.競(jìng)爭(zhēng)對(duì)手表現(xiàn)不佳9、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況至關(guān)重要。假設(shè)要在一組生產(chǎn)數(shù)據(jù)中檢測(cè)異常值,以下關(guān)于異常值檢測(cè)方法的描述,正確的是:()A.僅通過觀察數(shù)據(jù)的分布,主觀判斷異常值,不使用任何定量方法B.采用單一的異常值檢測(cè)算法,不考慮其局限性和數(shù)據(jù)特點(diǎn)C.綜合運(yùn)用多種異常值檢測(cè)方法,結(jié)合數(shù)據(jù)的領(lǐng)域知識(shí)和業(yè)務(wù)背景,對(duì)檢測(cè)結(jié)果進(jìn)行評(píng)估和解釋D.忽略異常值的存在,認(rèn)為它們對(duì)數(shù)據(jù)分析結(jié)果沒有影響10、在處理大數(shù)據(jù)時(shí),分布式計(jì)算框架發(fā)揮了重要作用。以下關(guān)于分布式計(jì)算框架的描述,正確的是:()A.Hadoop僅適用于數(shù)據(jù)存儲(chǔ),不支持?jǐn)?shù)據(jù)處理B.Spark相比Hadoop,在迭代計(jì)算方面性能更優(yōu)C.分布式計(jì)算框架可以解決數(shù)據(jù)的一致性問題,但無(wú)法提高計(jì)算效率D.分布式計(jì)算框架中的節(jié)點(diǎn)之間不需要進(jìn)行通信和協(xié)調(diào)11、在數(shù)據(jù)分析中,數(shù)據(jù)倉(cāng)庫(kù)的架構(gòu)有很多種,其中星型架構(gòu)是一種常用的架構(gòu)。以下關(guān)于星型架構(gòu)的描述中,錯(cuò)誤的是?()A.星型架構(gòu)由事實(shí)表和維度表組成B.事實(shí)表中包含了大量的詳細(xì)數(shù)據(jù),維度表中包含了對(duì)事實(shí)表的描述信息C.星型架構(gòu)的數(shù)據(jù)查詢效率較高,適用于大規(guī)模數(shù)據(jù)集D.星型架構(gòu)的設(shè)計(jì)和維護(hù)比較復(fù)雜,需要專業(yè)的技術(shù)和知識(shí)12、數(shù)據(jù)分析中,數(shù)據(jù)可視化的風(fēng)格應(yīng)根據(jù)不同的受眾和目的進(jìn)行選擇。以下關(guān)于數(shù)據(jù)可視化風(fēng)格選擇的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化風(fēng)格可以分為簡(jiǎn)潔明了、生動(dòng)形象、專業(yè)嚴(yán)謹(jǐn)?shù)炔煌愋虰.數(shù)據(jù)可視化風(fēng)格的選擇應(yīng)考慮受眾的背景、知識(shí)水平和需求等因素C.數(shù)據(jù)可視化風(fēng)格的選擇可以根據(jù)具體的問題和數(shù)據(jù)特點(diǎn)來確定D.數(shù)據(jù)可視化風(fēng)格一旦確定就不能再進(jìn)行調(diào)整和改變,否則會(huì)影響用戶體驗(yàn)13、數(shù)據(jù)分析中的文本挖掘用于從大量文本數(shù)據(jù)中提取有價(jià)值的信息。假設(shè)要從客戶的評(píng)價(jià)文本中挖掘他們的滿意度,以下關(guān)于文本挖掘的描述,哪一項(xiàng)是不正確的?()A.可以使用詞袋模型將文本轉(zhuǎn)換為數(shù)值向量,以便進(jìn)行后續(xù)的分析B.情感分析能夠判斷文本的情感傾向,如積極、消極或中性C.主題模型可以發(fā)現(xiàn)文本中的潛在主題,但無(wú)法確定每個(gè)文本所屬的具體主題D.文本挖掘不需要對(duì)文本進(jìn)行預(yù)處理,如分詞和去除停用詞14、在數(shù)據(jù)分析的實(shí)際應(yīng)用中,模型的部署和更新是重要環(huán)節(jié)。假設(shè)你已經(jīng)建立了一個(gè)預(yù)測(cè)模型并投入使用,以下關(guān)于模型更新的策略,哪一項(xiàng)是最合理的?()A.定期重新訓(xùn)練模型,使用最新的數(shù)據(jù)B.只有當(dāng)模型性能明顯下降時(shí)才進(jìn)行更新C.從不更新模型,認(rèn)為初始模型足夠好D.隨機(jī)選擇時(shí)間更新模型15、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)描述在數(shù)據(jù)分析項(xiàng)目中,如何制定有效的數(shù)據(jù)收集策略,包括確定數(shù)據(jù)來源、收集方法和數(shù)據(jù)質(zhì)量控制措施。2、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的特征工程?包括特征提取、選擇和構(gòu)建,請(qǐng)舉例說明不同方法的應(yīng)用。3、(本題5分)在數(shù)據(jù)分析項(xiàng)目中,如何進(jìn)行需求分析和問題定義?請(qǐng)說明需要考慮的關(guān)鍵因素和常用的方法,并舉例說明。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在金融市場(chǎng)的信用衍生品定價(jià)中,如何運(yùn)用數(shù)據(jù)分析評(píng)估信用風(fēng)險(xiǎn),確定合理的定價(jià)模型和參數(shù)。2、(本題5分)餐飲行業(yè)可以利用數(shù)據(jù)分析來優(yōu)化菜單設(shè)計(jì)、食材采購(gòu)和顧客滿意度。請(qǐng)論述如何收集和分析相關(guān)數(shù)據(jù),制定相應(yīng)的策略,并考慮地域、消費(fèi)群體等差異的影響。3、(本題5分)在電商平臺(tái)的品牌營(yíng)銷中,數(shù)據(jù)分析能夠精準(zhǔn)定位目標(biāo)客戶和評(píng)估品牌影響力。以某電商平臺(tái)上的品牌商家為例,闡述如何通過數(shù)據(jù)分析來制定品牌推廣策略、選擇合作渠道、評(píng)估品牌價(jià)值,以及如何利用社交媒體數(shù)據(jù)提升品牌知名度。4、(本題5分)隨著移動(dòng)應(yīng)用的廣泛使用,產(chǎn)生了大量的用戶行為數(shù)據(jù)。論述如何通過數(shù)據(jù)分析技術(shù),像用戶留存分析、應(yīng)用內(nèi)購(gòu)買行為研究等,優(yōu)化移動(dòng)應(yīng)用的功能設(shè)計(jì)、提升用戶體驗(yàn),增加應(yīng)用的商業(yè)價(jià)值,同時(shí)思考數(shù)據(jù)碎片化和跨平臺(tái)數(shù)據(jù)整合的困難及應(yīng)對(duì)措施。5、(本題5分)物流行業(yè)在貨物運(yùn)輸和倉(cāng)儲(chǔ)管理中積累了豐富的數(shù)據(jù)。探討如何借助數(shù)據(jù)分析方法,比如運(yùn)輸路徑優(yōu)化、庫(kù)存水平預(yù)測(cè)等,降低物流成本、提高物流服務(wù)的時(shí)效性和準(zhǔn)確性,同時(shí)研究在數(shù)據(jù)實(shí)時(shí)性要求、供應(yīng)鏈不確定性和物流信息系統(tǒng)集成方面所面臨的挑戰(zhàn)及解決途徑。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)一家電商企業(yè)擁有大量的銷售數(shù)據(jù),包括商品類別、價(jià)格、銷量、用戶評(píng)價(jià)等。請(qǐng)分析不同商品類別在不同價(jià)格區(qū)間的銷量

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論