常州機(jī)電職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
常州機(jī)電職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
常州機(jī)電職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
常州機(jī)電職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
常州機(jī)電職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁,共3頁常州機(jī)電職業(yè)技術(shù)學(xué)院

《數(shù)據(jù)挖掘》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析項(xiàng)目中,項(xiàng)目管理和團(tuán)隊(duì)協(xié)作至關(guān)重要。假設(shè)一個(gè)團(tuán)隊(duì)正在進(jìn)行一個(gè)大型數(shù)據(jù)分析項(xiàng)目。以下關(guān)于項(xiàng)目管理的描述,哪一項(xiàng)是不正確的?()A.明確項(xiàng)目目標(biāo)和需求,制定詳細(xì)的項(xiàng)目計(jì)劃和時(shí)間表B.合理分配團(tuán)隊(duì)成員的任務(wù),充分發(fā)揮每個(gè)人的優(yōu)勢(shì)C.項(xiàng)目過程中不需要進(jìn)行溝通和協(xié)調(diào),各自完成自己的任務(wù)即可D.及時(shí)監(jiān)控項(xiàng)目進(jìn)度,對(duì)出現(xiàn)的問題和風(fēng)險(xiǎn)進(jìn)行有效的管理和控制2、在數(shù)據(jù)分析中,數(shù)據(jù)分析的結(jié)果需要進(jìn)行解釋和評(píng)估。以下關(guān)于結(jié)果解釋和評(píng)估的描述中,錯(cuò)誤的是?()A.結(jié)果解釋應(yīng)該結(jié)合問題的背景和目的,進(jìn)行合理的分析和推斷B.結(jié)果評(píng)估應(yīng)該使用客觀的指標(biāo)和方法,進(jìn)行準(zhǔn)確的評(píng)價(jià)和判斷C.結(jié)果解釋和評(píng)估可以根據(jù)需要進(jìn)行調(diào)整和修改,以滿足不同的需求D.結(jié)果解釋和評(píng)估只需要關(guān)注數(shù)據(jù)分析的結(jié)果,無需考慮數(shù)據(jù)的質(zhì)量和可靠性3、在進(jìn)行數(shù)據(jù)分析時(shí),需要處理數(shù)據(jù)的不平衡問題。假設(shè)要分析信用卡欺詐檢測(cè)數(shù)據(jù),其中欺詐交易的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于正常交易。以下哪種方法在處理這種數(shù)據(jù)不平衡問題時(shí)更能提高模型對(duì)少數(shù)類(欺詐交易)的識(shí)別能力?()A.過采樣B.欠采樣C.合成少數(shù)類過采樣技術(shù)(SMOTE)D.以上方法結(jié)合使用4、數(shù)據(jù)分析中,數(shù)據(jù)可視化的風(fēng)格應(yīng)根據(jù)不同的受眾和目的進(jìn)行選擇。以下關(guān)于數(shù)據(jù)可視化風(fēng)格選擇的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)可視化風(fēng)格可以分為簡(jiǎn)潔明了、生動(dòng)形象、專業(yè)嚴(yán)謹(jǐn)?shù)炔煌愋虰.數(shù)據(jù)可視化風(fēng)格的選擇應(yīng)考慮受眾的背景、知識(shí)水平和需求等因素C.數(shù)據(jù)可視化風(fēng)格的選擇可以根據(jù)具體的問題和數(shù)據(jù)特點(diǎn)來確定D.數(shù)據(jù)可視化風(fēng)格一旦確定就不能再進(jìn)行調(diào)整和改變,否則會(huì)影響用戶體驗(yàn)5、數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù)是一個(gè)重要的問題。假設(shè)一家公司要對(duì)員工的個(gè)人數(shù)據(jù)進(jìn)行分析,同時(shí)需要確保數(shù)據(jù)的使用符合法律和道德規(guī)范。以下哪種措施可能有助于保護(hù)員工的隱私?()A.匿名化處理數(shù)據(jù)B.只在公司內(nèi)部網(wǎng)絡(luò)中分析數(shù)據(jù)C.獲得員工的明確同意D.以上措施都有助于保護(hù)隱私6、在進(jìn)行數(shù)據(jù)分析時(shí),選擇合適的統(tǒng)計(jì)量可以幫助我們更好地理解數(shù)據(jù)。關(guān)于均值、中位數(shù)和眾數(shù),以下描述錯(cuò)誤的是:()A.均值容易受到極端值的影響B(tài).中位數(shù)是將數(shù)據(jù)排序后位于中間位置的數(shù)值C.眾數(shù)是數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)值,一定唯一D.對(duì)于偏態(tài)分布的數(shù)據(jù),中位數(shù)可能比均值更能反映數(shù)據(jù)的中心位置7、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究某電商平臺(tái)用戶的購買行為與年齡、性別、地域等因素的關(guān)系,以下哪種分析方法最為合適?()A.描述性統(tǒng)計(jì)分析B.相關(guān)性分析C.回歸分析D.因子分析8、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)和融合時(shí),需要確保數(shù)據(jù)的一致性和準(zhǔn)確性。假設(shè)你有來自不同系統(tǒng)的銷售數(shù)據(jù)和庫存數(shù)據(jù),要進(jìn)行關(guān)聯(lián)分析。以下關(guān)于數(shù)據(jù)關(guān)聯(lián)方法的選擇,哪一項(xiàng)是最需要注意的?()A.根據(jù)共同的主鍵或標(biāo)識(shí)符進(jìn)行精確匹配關(guān)聯(lián)B.使用模糊匹配算法,允許一定程度的差異進(jìn)行關(guān)聯(lián)C.不進(jìn)行任何預(yù)處理,直接將數(shù)據(jù)合并,期望自動(dòng)關(guān)聯(lián)D.隨機(jī)選擇一種關(guān)聯(lián)方法,不考慮數(shù)據(jù)的特點(diǎn)9、數(shù)據(jù)挖掘是從大量數(shù)據(jù)中發(fā)現(xiàn)潛在模式和知識(shí)的過程。假設(shè)一家電商企業(yè)想要通過數(shù)據(jù)挖掘來發(fā)現(xiàn)客戶的購買行為模式,以便進(jìn)行精準(zhǔn)營(yíng)銷。以下哪種數(shù)據(jù)挖掘技術(shù)可能最為適用?()A.關(guān)聯(lián)規(guī)則挖掘B.分類算法C.聚類分析D.預(yù)測(cè)分析10、對(duì)于一個(gè)分類問題,若訓(xùn)練集的準(zhǔn)確率很高,但測(cè)試集的準(zhǔn)確率很低,可能的原因是?()A.模型過擬合B.模型欠擬合C.數(shù)據(jù)有偏差D.特征選擇不當(dāng)11、數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用越來越廣泛。以下關(guān)于數(shù)據(jù)分析在金融風(fēng)險(xiǎn)管理中的作用,不準(zhǔn)確的是()A.可以通過分析歷史數(shù)據(jù)來評(píng)估信用風(fēng)險(xiǎn),預(yù)測(cè)違約概率B.利用市場(chǎng)數(shù)據(jù)進(jìn)行風(fēng)險(xiǎn)模型的構(gòu)建和壓力測(cè)試,防范系統(tǒng)性風(fēng)險(xiǎn)C.數(shù)據(jù)分析能夠?qū)崟r(shí)監(jiān)測(cè)交易活動(dòng),發(fā)現(xiàn)異常和欺詐行為D.數(shù)據(jù)分析在金融風(fēng)險(xiǎn)管理中雖然有一定作用,但傳統(tǒng)的風(fēng)險(xiǎn)管理方法仍然是主要的手段,數(shù)據(jù)分析可以忽略12、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的效果可以通過多種方式進(jìn)行評(píng)估。以下關(guān)于數(shù)據(jù)預(yù)處理效果評(píng)估的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)預(yù)處理效果可以通過比較預(yù)處理前后的數(shù)據(jù)質(zhì)量指標(biāo)來評(píng)估B.數(shù)據(jù)預(yù)處理效果可以通過對(duì)預(yù)處理后的數(shù)據(jù)進(jìn)行分析和建模來評(píng)估C.數(shù)據(jù)預(yù)處理效果評(píng)估應(yīng)考慮數(shù)據(jù)的特點(diǎn)和分析目的,選擇合適的評(píng)估方法D.數(shù)據(jù)預(yù)處理效果評(píng)估只需要關(guān)注數(shù)據(jù)的準(zhǔn)確性,其他方面可以忽略不計(jì)13、數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中有著廣泛的應(yīng)用。假設(shè)一家公司想要評(píng)估不同廣告渠道的效果。以下關(guān)于數(shù)據(jù)分析在市場(chǎng)營(yíng)銷中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過A/B測(cè)試比較不同廣告版本的效果,確定最優(yōu)方案B.客戶細(xì)分能夠幫助企業(yè)針對(duì)不同客戶群體制定個(gè)性化的營(yíng)銷策略C.僅僅依靠數(shù)據(jù)分析就能夠完全了解客戶的需求和行為,無需進(jìn)行市場(chǎng)調(diào)研D.數(shù)據(jù)分析可以監(jiān)測(cè)營(yíng)銷活動(dòng)的效果,及時(shí)調(diào)整策略,提高投資回報(bào)率14、數(shù)據(jù)倉庫是數(shù)據(jù)分析的重要基礎(chǔ)設(shè)施。假設(shè)一個(gè)企業(yè)要構(gòu)建數(shù)據(jù)倉庫來整合來自不同業(yè)務(wù)系統(tǒng)的數(shù)據(jù),以下哪個(gè)步驟是首先要進(jìn)行的?()A.確定數(shù)據(jù)倉庫的架構(gòu)B.進(jìn)行數(shù)據(jù)清洗和轉(zhuǎn)換C.定義數(shù)據(jù)模型D.選擇合適的數(shù)據(jù)庫管理系統(tǒng)15、在數(shù)據(jù)挖掘的關(guān)聯(lián)規(guī)則挖掘中,以下哪個(gè)指標(biāo)用于衡量規(guī)則的有效性和實(shí)用性?()A.支持度B.置信度C.提升度D.以上都是16、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法17、在數(shù)據(jù)分析中,數(shù)據(jù)分析的方法有很多,其中聚類分析是一種常用的方法。以下關(guān)于聚類分析的描述中,錯(cuò)誤的是?()A.聚類分析可以將數(shù)據(jù)分為不同的類別,使得同一類中的數(shù)據(jù)具有相似的特征B.聚類分析的結(jié)果可以用聚類中心和聚類半徑來表示C.聚類分析可以用于數(shù)據(jù)的分類和預(yù)測(cè)D.聚類分析的算法有多種,如k-means聚類、層次聚類等18、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫用于存儲(chǔ)和管理大量的數(shù)據(jù)。假設(shè)要構(gòu)建一個(gè)企業(yè)的數(shù)據(jù)倉庫,以下關(guān)于數(shù)據(jù)倉庫的描述,哪一項(xiàng)是不正確的?()A.數(shù)據(jù)倉庫通常采用多維數(shù)據(jù)模型,便于進(jìn)行數(shù)據(jù)分析和查詢B.數(shù)據(jù)倉庫中的數(shù)據(jù)經(jīng)過清洗、轉(zhuǎn)換和整合,具有較高的數(shù)據(jù)質(zhì)量C.數(shù)據(jù)倉庫只適合存儲(chǔ)結(jié)構(gòu)化數(shù)據(jù),對(duì)于非結(jié)構(gòu)化數(shù)據(jù)無法處理D.可以通過建立數(shù)據(jù)集市,為不同部門和業(yè)務(wù)提供定制的數(shù)據(jù)服務(wù)19、對(duì)于一個(gè)包含大量文本數(shù)據(jù)的數(shù)據(jù)集,若要進(jìn)行情感分析,以下哪種技術(shù)可能會(huì)被用到?()A.自然語言處理B.圖像識(shí)別C.語音識(shí)別D.機(jī)器學(xué)習(xí)20、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行缺失值處理,同時(shí)考慮數(shù)據(jù)的分布特征,以下哪種方法較為合適?()A.隨機(jī)森林插補(bǔ)B.基于聚類的插補(bǔ)C.基于回歸的插補(bǔ)D.以上都不是二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)闡述在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的公平性評(píng)估,包括算法公平性、結(jié)果公平性等方面的評(píng)估指標(biāo)和方法。2、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何進(jìn)行數(shù)據(jù)的探索性分析(EDA)?解釋EDA的主要步驟和目的,以及常用的工具和技術(shù)。3、(本題5分)在數(shù)據(jù)倉庫設(shè)計(jì)中,如何進(jìn)行數(shù)據(jù)分區(qū)和索引優(yōu)化?請(qǐng)說明分區(qū)和索引的類型、適用場(chǎng)景和優(yōu)化策略,并舉例說明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某在線自考學(xué)習(xí)平臺(tái)保存了學(xué)生學(xué)習(xí)進(jìn)度、考試成績(jī)、學(xué)習(xí)困難反饋等。優(yōu)化課程內(nèi)容和學(xué)習(xí)支持服務(wù)。2、(本題5分)某在線瑜伽用品銷售平臺(tái)積累了產(chǎn)品銷售數(shù)據(jù)、用戶需求特點(diǎn)、品牌競(jìng)爭(zhēng)情況等。推出符合市場(chǎng)需求的瑜伽用品和促銷活動(dòng)。3、(本題5分)某在線爵士舞教學(xué)平臺(tái)積累了學(xué)員學(xué)習(xí)數(shù)據(jù)、舞蹈風(fēng)格喜好、教學(xué)場(chǎng)地需求等。改善爵士舞教學(xué)環(huán)境和教學(xué)內(nèi)容。4、(本題5分)一家在線旅游平臺(tái)的跟團(tuán)游產(chǎn)品數(shù)據(jù)包含行程安排、價(jià)格、出發(fā)地、游客評(píng)價(jià)等。探討不同行程安排和價(jià)格的跟團(tuán)游在不同出發(fā)地的受歡迎程度和游客評(píng)價(jià)。5、(本題5分)某網(wǎng)約車平臺(tái)掌握了司機(jī)和乘客的出行數(shù)據(jù)、評(píng)價(jià)數(shù)據(jù)、訂單量等信息。優(yōu)化派單算法,提高服務(wù)質(zhì)量和運(yùn)營(yíng)效率。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)在醫(yī)療健康大數(shù)據(jù)的應(yīng)用中,數(shù)據(jù)分析可以推動(dòng)醫(yī)療服務(wù)的創(chuàng)新。以某區(qū)域醫(yī)療健

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論