姜書艷數(shù)字邏輯設計及應用8_第1頁
姜書艷數(shù)字邏輯設計及應用8_第2頁
姜書艷數(shù)字邏輯設計及應用8_第3頁
姜書艷數(shù)字邏輯設計及應用8_第4頁
姜書艷數(shù)字邏輯設計及應用8_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1,Chapter 4 Combinational Logic Design Principles(組合邏輯設計原理),Basic Logic Algebra (邏輯代數(shù)基礎) Combinational-Circuit Analysis (組合電路分析) Combinational-Circuit Synthesis (組合電路綜合),Digital Logic Design and Application (數(shù)字邏輯設計及應用),2,Review of Chapter 3,Electronic Behavior of CMOS Circuits Logic Voltage Levels (

2、邏輯電壓電平) DC Noise Margins (直流噪聲容限) Fan-In(扇入) Fun-Out (扇出),Digital Logic Design and Application (數(shù)字邏輯設計及應用),3,Review of Chapter 3,Transmission Gates (傳輸門) Schmitt-Trigger Inputs (Hysteresis) Three-State Outputs (Tri-State output) Open-Drain Outputs (Open-Collector Gate),Digital Logic Design and Appli

3、cation (數(shù)字邏輯設計及應用),4,Review of Chapter 3,Logic Levels CMOS(0-1.5V, 3.5-5V) TTL(0-0.8V, 2-5V) ECL(L=-1.8V, H=-0.9V) (L=3.6V, H=4.4V),Digital Logic Design and Application (數(shù)字邏輯設計及應用),5,Review of Chapter 3,Wired AND (線與) Open-Drain Outputs (Open-Collector Gate) Wired OR (線或) Emitter-Coupled Logic Gate

4、(ECL, 發(fā)射極耦合邏輯門),Digital Logic Design and Application (數(shù)字邏輯設計及應用),6,Digital Logic Design and Application (數(shù)字邏輯設計及應用),Review of Chapter 3,Positive Logic and Negative Logic (正邏輯和負邏輯) Three basic logic functions: AND, OR, and NOT (三種基本邏輯:與、或、非),7,Review of Chapter 3 (第三章內容回顧),Digital Logic Design and Ap

5、plication (數(shù)字邏輯設計及應用),Three kinds of Description Method (三種描述方法): Truth Table (真值表) Logic Expression (邏輯表達式) Logic Circuit (邏輯符號) NAND and NOR (與非和或非),8,8,Introduction,Lets learn to design digital circuits, starting with a simple form of circuit: Combinational circuit Outputs depend solely on the pr

6、esent combination of the circuit inputs values,2.1,Digital,System,if b=0, then F=0,if b=1, then F=1,b=1,F=1,(a),Vs. sequential circuit: Has “memory” that impacts outputs too,Digital,System,b=0,F=1,Cannot determine value of F solely from present input value,(b),9,Digital Logic Design and Application

7、(數(shù)字邏輯設計及應用),Basic Concepts (基本概念),Two Types of Logic Circuits(邏輯電路分為兩大類): Combinational Logic Circuit(組合邏輯電路) Sequential Logic Circuit(時序邏輯電路),Outputs depend only on its Current Inputs. (任何時刻的輸出僅取決與當時的輸入),Outputs depends not only on the current Inputs but also on the Past sequence of Inputs. (任一時刻的輸

8、出不僅取決與當時的輸入, 還取決于過去的輸入序列),電路特點:無反饋回路、無記憶元件,10,Digital Logic Design and Application (數(shù)字邏輯設計及應用),4.1 Switching Algebra (開關代數(shù)),4.1.1 Axioms (公理) X = 0 , if X 1 X = 1, if X 0 0 = 1 1 = 0 00 = 0 1+1 = 1 11 = 1 0+0 = 0 01 = 10 = 0 1+0 = 0+1 = 1,F = 0 + 1 ( 0 + 1 0 ) = 0 + 1 1,11,4.1.2 Single-Variable Theo

9、rems(單變量開關代數(shù)定理),Identities (自等律):X + 0 = X X 1 = X Null Elements (0-1律):X + 1 = 1 X 0 = 0 Involution (還原律):( X ) = X Idempotency(同一律):X + X = X X X = X Complements(互補律):X + X = 1 X X = 0,Digital Logic Design and Application (數(shù)字邏輯設計及應用),12,Digital Logic Design and Application (數(shù)字邏輯設計及應用),4.1.3 Two-an

10、d Three-Variable Theorems (二變量或三變量開關代數(shù)定理),Similar Relationship with General Algebra (與普通代數(shù)相似的關系) Commutativity (交換律) A B = B A A + B = B + A Associativity (結合律) A(BC) = (AB)C A+(B+C) = (A+B)+C Distributivity (分配律) A(B+C) = AB+AC A+BC = (A+B)(A+C),可以利用真值表證明公式和定理,13,Perfect induction of the theorem,Us

11、e the truth table to prove the functions on both side are same !,To prove, just evaluate all possibilities,14,14,Example uses of the properties,Show abc equivalent to cba. Use commutative property: a*b*c = a*c*b = c*a*b = c*b*a Show abc + abc = ab. Use first distributive property abc + abc = ab(c+c)

12、. Complement property Replace c+c by 1: ab(c+c) = ab(1). Identity property ab(1) = ab*1 = ab.,a,15,15,Example uses of the properties,Show x + xz equivalent to x + z. Second distributive property Replace x+xz by (x+x)*(x+z). Complement property Replace (x+x) by 1, Identity property replace 1*(x+z) by

13、 x+z.,a,16,Notes (幾點注意),不存在變量的指數(shù) AAA A3 允許提取公因子 AB+AC = A(B+C) 沒有定義除法 if AB=BC A=C ?,沒有定義減法 if A+B=A+C B=C ?,A=1, B=0, C=0 AB=AC=0, AC,A=1, B=0, C=1,錯!,錯!,Digital Logic Design and Application (數(shù)字邏輯設計及應用),17,Some Special Relationships(一些特殊的關系),Covering (吸收律) X + XY = X X(X+Y) = X Combining (組合律) XY +

14、 XY = X (X+Y)(X+Y) = X Consensus 添加律(一致性定理) XY + XZ + YZ = XY + XZ (X+Y)(X+Z)(Y+Z) = (X+Y)(X+Z),Digital Logic Design and Application (數(shù)字邏輯設計及應用),18,對上述的公式、定理要熟記,做到舉一反三,(X+Y) + (X+Y) = 1,A + A = 1,XY + XY = X,(A+B)(A(B+C) + (A+B)(A(B+C) = (A+B),Digital Logic Design and Application (數(shù)字邏輯設計及應用),19,Prov

15、e (證明): XY + XZ + YZ = XY + XZ,YZ = 1YZ = (X+X)YZ,XY + XZ + (X+X)YZ,= XY + XZ + XYZ +XYZ,= XY(1+Z) + XZ(1+Y),= XY + XZ,Digital Logic Design and Application (數(shù)字邏輯設計及應用),20,4.1.4 n-Variable Theorems (n變量定理),Generalized idempotency theorem ( 廣義同一律 ) X + X + + X = X X X X = X Shannons expansion theorems

16、 ( 香農(nóng)展開定理 ),Digital Logic Design and Application (數(shù)字邏輯設計及應用),21,Prove (證明): AD + AC + CD + ABCD = AD + AC,= A ( 1D + 1C + CD + 1BCD ) + A ( 0D + 0C + CD + 0BCD ),= A ( D + CD + BCD ) + A ( C + CD ),= AD( 1 + C + BC ) + AC( 1 + D ),= AD + AC,Digital Logic Design and Application (數(shù)字邏輯設計及應用),22,4.1.4 n

17、-Variable Theorems ( n變量定理 ),Demorgans Theorems (摩根定理), Complement Theorems (反演定理),Digital Logic Design and Application (數(shù)字邏輯設計及應用),23,Complement Rules (反演規(guī)則): +,0 1,Complementing Variables ( 變量取反 ) Follow the Priority Sequence as Before ( 遵循原來的運算優(yōu)先次序 ) Keep the complement Symbol of Non-single varia

18、bles ( 不屬于單個變量上的反號應保留不變 ),Digital Logic Design and Application (數(shù)字邏輯設計及應用),24,Example 1:Write the Complement function for each of The Following Logic functions. (寫出下面函數(shù)的反函數(shù) ) F1 = A (B + C) + C D F2 = (A B) + C D E,Example 2:Prove (AB + AC) = AB + AC,合理地運用反演定理能夠將一些問題簡化,25,合理地運用反演定理能夠將一些問題簡化,Digital

19、Logic Design and Application (數(shù)字邏輯設計及應用),26,4.1.5 Duality (對偶性),Duality Rule ( 對偶規(guī)則 ) +;0 1 變換時不能破壞原來的運算順序(優(yōu)先級) Principle of Duality ( 對偶原理 ) 若兩邏輯式相等,則它們的對偶式也相等,例: Write the Duality function for each of the following Logic functions. (寫出下面函數(shù)的對偶函數(shù)) F1 = A + B (C + D) F2 = ( A(B+C) + (C+D) ),X + X Y =

20、 X X X + Y = X X + Y = X,X ( X + Y ) = X,FD(X1 , X2 , , Xn , + , , ) = F(X1 , X2 , , Xn , , + , ),Digital Logic Design and Application (數(shù)字邏輯設計及應用),27,4.1.5 Duality (對偶性),證明公式:A+BC = (A+B)(A+C),Digital Logic Design and Application (數(shù)字邏輯設計及應用),Duality Rule ( 對偶規(guī)則 ) +;0 1 變換時不能破壞原來的運算順序(優(yōu)先級) Principle of Duality ( 對偶原理 ) 若兩邏輯式相等,則它們的對偶式也相等,28,Two kind of logic,Positive logic : 1 ( high level ) 0 (low level) Negative logic: 0 ( high level ) 1 (low level),If a logic relation exist in positive logic, it must be exist in negative logic. Both logic are duality for each other.,Positive-Lo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論