自動控制原理課件胡壽松官方版.ppt_第1頁
自動控制原理課件胡壽松官方版.ppt_第2頁
自動控制原理課件胡壽松官方版.ppt_第3頁
自動控制原理課件胡壽松官方版.ppt_第4頁
自動控制原理課件胡壽松官方版.ppt_第5頁
已閱讀5頁,還剩84頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1,第二章 控制系統(tǒng)的數(shù)學模型,2-1 時域數(shù)學模型 2-2 復(fù)域數(shù)學模型 2-3 結(jié)構(gòu)圖與信號流圖,2,2.2.1 傳遞函數(shù)的定義和性質(zhì) 傳遞函數(shù)傳遞函數(shù)是系統(tǒng)(或元件)一個輸入量與一個輸出量之間關(guān)系的數(shù)學描述,它不涉及系統(tǒng)內(nèi)部狀態(tài)變化情況,為輸入輸出模型。,3,1. 定義 零初始條件下,線性定常系統(tǒng)輸出量的拉氏變換與輸入量的拉氏變換之比,稱為該系統(tǒng)的傳遞函數(shù),記為G(s),即:,意義:,4,2.3.1 結(jié)構(gòu)圖的基本概念 系統(tǒng)結(jié)構(gòu)圖又稱方塊圖,是將系統(tǒng)中所有的環(huán)節(jié)用方塊來表示,按照系統(tǒng)中各個環(huán)節(jié)之間的聯(lián)系,將各方塊連接起來構(gòu)成的;方塊的一端為相應(yīng)環(huán)節(jié)的輸入信號,另一端為輸出信號,用箭頭表示信號傳遞的方向,并在方塊內(nèi)標明相應(yīng)環(huán)節(jié)的傳遞函數(shù)。,表明了系統(tǒng)的組成、信號的傳遞方向; 表示出了系統(tǒng)信號傳遞過程中的數(shù)學關(guān)系; 可揭示、評價各環(huán)節(jié)對系統(tǒng)的影響; 易構(gòu)成整個系統(tǒng),并簡化寫出整個系統(tǒng)的傳遞函數(shù); 直觀、方便(圖解法)。,5,2.3.2 組成, 相加點(綜合點、比較點) 相同性質(zhì)的信號進行去取代數(shù)和 (相同量綱的物理量), 方塊:一個元件(環(huán)節(jié)), 信號流線:箭頭表示信號傳遞方向, 分支點:信號多路輸出且相等,6,2.3.3 建立 步驟: (1)列出描述每個元件的拉普拉斯變換方程。 (2)以構(gòu)成結(jié)構(gòu)圖的基本要素表示每個方程,并將各環(huán)節(jié)的傳遞函數(shù)填入方塊圖內(nèi);將信號的拉普拉斯變換標在信號線附近。 (3)按照系統(tǒng)中信號傳遞的順序,依次將各環(huán)節(jié)的結(jié)構(gòu)圖連接起來,便構(gòu)成系統(tǒng)的結(jié)構(gòu)圖。,一個負反饋系統(tǒng)的結(jié)構(gòu)圖,7,2.3.4 結(jié)構(gòu)圖的等效變換,1. 環(huán)節(jié)的合并,(1) 串聯(lián),8,(2)并聯(lián),9,(3) 反饋,10,2.3.5 信號流圖的基本要素,節(jié)點代表系統(tǒng)中的一個變量或信號。用符號“ ”表示。 支路是連接兩個節(jié)點的定向線段。用符號“”表示,其中的箭頭表示信號的傳送方向。 傳輸亦稱支路增益,支路傳輸定量地表明變量從支路一端沿箭頭方向傳送到另一端的函數(shù)關(guān)系。用標在支路旁邊的傳遞函數(shù)“G”表示支路傳輸。,11,2.3.6 信號流圖的常用術(shù)語,1節(jié)點及其類別 源節(jié)點 只有輸出支路而無輸入支路的節(jié)點稱為源節(jié)點或輸入節(jié)點,對應(yīng)于系統(tǒng)的輸入變量,如圖2.40中的R、D。 阱節(jié)點 只有輸入支路而無輸出支路的節(jié)點稱為阱節(jié)點或輸出節(jié)點,它對應(yīng)于系統(tǒng)的輸出變量,如圖2.40中的C。 混合節(jié)點 既有輸入支路又有輸出支路的節(jié)點稱為混合節(jié)點,如圖2.40中的E、P 、Q。,12,3傳輸及其類別 通道傳輸 通道中各支路傳輸?shù)某朔e稱為通道的傳輸。 回路傳輸 回路中各支路傳輸?shù)某朔e,稱為回路的傳輸。 前向通道傳輸 前向通道中各支路傳輸?shù)某朔e稱為前向通道的傳輸。,13,2.3.7 梅遜(Mason)公式,14,例2.12 用梅遜增益公式求圖2.43所示的傳遞函數(shù)。,解 一條前向通道,P1=G1G2G3G4G5,三個反饋回路,L1=G2G3H1 L2=G3G4H2 L3=G1G2G3G4H3,三個回路相互接觸,=1 (L1 +L2 +L3),=1 (G2G3H1 G3G4H2 G1G2G3G4H3),15,三個回路均與前向通道接觸,1=1,16,本講小結(jié) 1.傳遞函數(shù)是系統(tǒng)(或元件)一個輸入量與一個輸出量之間關(guān)系的數(shù)學描述,它不涉及系統(tǒng)內(nèi)部狀態(tài)變化情況,為輸入輸出模型。 2.結(jié)構(gòu)圖是系統(tǒng)數(shù)學模型的一種圖形表達形式。由系統(tǒng)結(jié)構(gòu)圖可直觀看出系統(tǒng)的組成,信號的傳送方向,各組成環(huán)節(jié)輸入與輸出量之間的關(guān)系,利用結(jié)構(gòu)圖的等效變換法則可得系統(tǒng)總的傳遞函數(shù)。 3.信號流圖也是控制系統(tǒng)的一種用圖形表示的數(shù)學模型。其符號簡單,便于繪制??梢愿鶕?jù)統(tǒng)一的公式直接求得系統(tǒng)的傳遞函數(shù)。 4.通過本章學習,要正確理解傳遞函數(shù)這個基本概念,應(yīng)熟悉繪制系統(tǒng)的結(jié)構(gòu)圖和從結(jié)構(gòu)圖中求取閉環(huán)系統(tǒng)傳遞函數(shù)的方法同時應(yīng)理解系統(tǒng)各種情況下閉環(huán)傳遞函數(shù)的意義。,17,第三章 線性系統(tǒng)的時域分析法,3-1 時域性能指標 3-2 一階系統(tǒng)時域分析 3-3 二階系統(tǒng)時域分析 3-4 穩(wěn)定性分析 3-6 穩(wěn)態(tài)誤差計算,18,B,動態(tài)性能指標定義1,19,上升時間tr,調(diào)節(jié)時間 ts,動態(tài)性能指標定義2,20,動態(tài)性能指標定義3,21,一階系統(tǒng)時域分析,單 位 脈 沖 響 應(yīng),單位階躍響應(yīng),h(t)=1-e-t/T,h(0)=1/T,h(T)=0.632h(),h(3T)=0.95h(),h(2T)=0.865h(),h(4T)=0.982h(),單位斜坡響應(yīng),T,c(t)=t-T+Te-t/T,r(t)= (t) r(t)= 1(t) r(t)= t,22,1,1,0 1,0,2,(s)=,s2+2 ns+n2,二階系統(tǒng)單位 階躍響應(yīng)定性分析,過阻尼,臨界阻尼,零阻尼,欠阻尼,23,欠阻尼二階系統(tǒng)動態(tài)性能分析與計算,n,0 1時:,- n,(0 0.8),24,設(shè)系統(tǒng)特征方程為:,s6+2s5+3s4+4s3+5s2+6s+7=0,勞 思 表,(64)/2=1,1,(10-6)/2=2,2,7,1,0,(6-14)/1= -8,-8,勞思表介紹,勞斯表特點,4 每兩行個數(shù)相等,1 右移一位降兩階,2 勞思行列第一列不動,3 次對角線減主對角線,5 分母總是上一行第一個元素,6 一行可同乘以或同除以某正數(shù),25,勞思判據(jù),系統(tǒng)穩(wěn)定的必要條件:,有正有負一定不穩(wěn)定!,缺項一定不穩(wěn)定!,系統(tǒng)穩(wěn)定的充分條件:,勞思表第一列元素不變號!,若變號系統(tǒng)不穩(wěn)定!,變號的次數(shù)為特征根在s右半平面的個數(shù)!,均大于零!,26,勞思表出現(xiàn)零行,設(shè)系統(tǒng)特征方程為:,s4+5s3+7s2+5s+6=0,勞 思 表,5,1,7,5,6,6,6,0,1 勞斯表何時會出現(xiàn)零行?,2 出現(xiàn)零行怎么辦?,3 如何求對稱的根?,s2+1=0,對其求導得零行系數(shù): 2s1,繼續(xù)計算勞斯表,1,第一列全大于零,所以系統(tǒng)穩(wěn)定,錯啦!,由綜合除法可得另兩個根為s3,4= -2,-3,27,誤差定義,輸入端定義:,E(s)=R(s)-B(s)=R(s)-C(s)H(s),輸出端定義:,E(s)=R(s)-C(s),En(s)=C希-C實= Cn(s),28,典型輸入下的穩(wěn)態(tài)誤差與靜態(tài)誤差系數(shù),R(s)=R/s,r(t)=R1(t),r(t)=Vt,R(s)=V/s2,r(t)=At2/2,R(s)=A/s3,29,取不同的,r(t)=R1(t),r(t)=Vt,r(t)=At2/2,型,0型,型,R1(t),Vt,0,0,0,At2/2,k,k,0,靜態(tài)誤差系數(shù),穩(wěn)態(tài)誤差,小結(jié):,1,2,3,非單位反饋怎么辦?,啥時能用表格?,表中誤差為無窮時系統(tǒng)還穩(wěn)定嗎?,30,減小和消除誤差的方法(1,2),1 按擾動的全補償,令R(s)=0,En(s) = -C(s) =,令分子=0,得Gn(s) = - (T1s+1)/k1,這就是按擾動的全補償,t從0全過程,各種干擾信號,2 按擾動的穩(wěn)態(tài)補償,設(shè)系統(tǒng)穩(wěn)定,N(s)=1/s ,則,Gn(s)= -1/k1,31,令N(s)=0, Er(s)=,令分子=0,得Gr(s)=,s (T2s+1)/ k2,3 按輸入的全補償,設(shè)系統(tǒng)穩(wěn)定,R(s)= 1/s2 則,4 按輸入的穩(wěn)態(tài)補償,減小和消除誤差的方法(3,4),32,第四章 線性系統(tǒng)的根軌跡法,4-1 根軌跡概念 4-2 繪制根軌跡的基本法則 4-3 廣義根軌跡,注意:,K一變,一組根變;,K一停,一組根停;,一組根對應(yīng)同一個K;,根軌跡概念,k=0時, s1=0, s2=2,0k0.5 時,兩個負實根 ;若s1=0.25, s2=?,k=0.5 時,s1=s2=1,演示rltool,34,G,H,閉環(huán)零極點與開環(huán)零極點的關(guān)系,35,模值條件與相 角條件的應(yīng)用,s1=-0.825 s2,3= -1.09j2.07,2.26,2.11,2.072,K*=,= 6.0068,92.49o- 66.27o- 78.8o- 127.53o= 180o,-1.09+j2.07,求模求角例題,-0.825 =0.466 n=2.34,36,根軌跡方程,特征方程 1+GH = 0,1,+,K*,這種形式的特征方程就是根軌跡方程,37,根軌跡的模值條件與相角條件,-1,38,繪制根軌跡的基本法則,1,根軌跡的條數(shù),2,根軌跡對稱于 軸,實,就是特征根的個數(shù),3,根軌跡起始于,終止于,開環(huán)極點,開環(huán)零點,4,n-m條漸近線對稱于實軸,均起于a 點,方,向由a確定:,k= 0,1,2, ,5,實軸上的根軌跡,6,根軌跡的會合與分離,1 說明什么,2 d的推導,3 分離角定義,實軸上某段右側(cè)零、極點個數(shù)之和為奇數(shù),則該段是根軌跡,k= 0,1,2, ,無零點時右邊為零,L為來會合的根軌跡條數(shù),7,與虛軸的交點,或,8,起始角與終止角,39,根軌跡示例1,40,根軌跡示例2,j,0,n=1;d=conv(1 2 0,1 2 2);rlocus(n,d),n=1 2;d=conv(1 2 5,1 6 10);rlocus(n,d),41,零度根軌跡,特征方程為以下形式時,繪制零度根軌跡,請注意:G(s)H(s)的分子分母均首一,42,零度根軌跡的模值條件與相角條件,零度,43,繪制零度根軌跡的基本法則,44,第五章 線性系統(tǒng)的頻域分析法,5-1 頻率判據(jù) 5-2 典型環(huán)節(jié)與開環(huán)頻率特性 5-3 頻域穩(wěn)定判據(jù) 5-4 穩(wěn)定裕度 5-5 閉環(huán)頻域性能指標,45,頻率特性的概念,設(shè)系統(tǒng)結(jié)構(gòu)如圖,,由勞思判據(jù)知系統(tǒng)穩(wěn)定。,給系統(tǒng)輸入一個幅值不變頻率不斷增大的正弦,,Ar=1 =0.5,=1,=2,=2.5,=4,曲線如下:,給穩(wěn)定的系統(tǒng)輸入一個正弦,其穩(wěn)態(tài)輸出是與輸入,同頻率的正弦,幅值隨而變,相角也是的函數(shù)。,46,A,B,相角問題, 穩(wěn)態(tài)輸出遲后于輸入的角度為:,該角度與有,A,B,該角度與初始,47,頻率特性,設(shè)系統(tǒng)穩(wěn)定,則正弦輸入時輸出為:,C(s)=(s)R(s)=,Cs(s)=,ct()=0,系統(tǒng)穩(wěn)定,,頻率特性,48,對數(shù)坐標系,49,倒置的坐標系,50,積分環(huán)節(jié)L(),-20,-20,-20,51,+20,+20,+20,微分環(huán)節(jié)L(),52,慣性環(huán)節(jié)G(j),() = -tg-10.5 ,0,1,-14.5,0.97,-26.6,0.89,-45,0.71,-63.4 -68.2 -76 -84,0.45 0.37 0.24 0.05,53,慣性環(huán)節(jié)L(),-20,-20,26dB,54,一階微分L(),+20,+20,55,振蕩環(huán)節(jié)G(j),(0 1),(0 0.707),56,振蕩環(huán)節(jié)G(j)曲線,(Nyquist曲線),57,振蕩環(huán)節(jié)L(),-40,58,振蕩環(huán)節(jié)再分析,n,r,-40,2,n,n,2,2,n,S,2,S,k,(s),G,w,+,w,+,w,=,59,二階微分,幅相曲線,對數(shù)幅頻漸近曲線,+40,n,幾點說明,0 0.707時有峰值:,60,繪制L()例題,-20,-40,-20,-40,例題1:繪制 的幅相曲線。,解:,求交點:,曲線如圖所示:,開環(huán)幅相曲線的繪制,無實數(shù)解,與虛軸無交點,穩(wěn)定裕度的定義,若z=p-2N中p=0,則G(j)過(-1,j0)點時,,系統(tǒng)臨界穩(wěn)定,見下圖:,G(j)曲線過(-1, j0)點時,,同時成立!,特點:, G(j) = -180o,G(j),63,j,0,1,c,x,G(j),G(jc),G(jc) = 180o,穩(wěn)定裕度的定義續(xù)1,-1,64, G(jc),20lg,穩(wěn)定裕度的定義續(xù)2,65,第六章 線性系統(tǒng)的校正方法,6-1 系統(tǒng)的設(shè)計與校正 6-2 串聯(lián)超前校正 6-3 串聯(lián)滯后-超前校正,66,超前校正網(wǎng)絡(luò),a1,低頻段:1 (0dB),轉(zhuǎn)折頻率:,斜 率:,+20,-20,得,Lc(m)=10lga,67,例6-3,系統(tǒng)如圖,試設(shè)計超前校正網(wǎng)絡(luò),,使r(t)=t 時,68,遲后校正網(wǎng)絡(luò),b1,低頻段: 1 (0dB),69,例6-4,設(shè)計校正網(wǎng)絡(luò)使圖示系統(tǒng),OK,70,滯后-超前校正網(wǎng)絡(luò),-10lg,m,-20lg,71,例6-5,設(shè)未校正系統(tǒng)開環(huán)傳遞函數(shù)如下,試設(shè)計校正網(wǎng)絡(luò)使: 1)在最大指令速度為180/s時, 位置滯后誤差不超過1o; 2) 相角裕度為 45o3o; 3) 幅值裕度不低于10dB; 4)動態(tài)過程調(diào)節(jié)時間ts不超過3秒。,72,由(6-8) (6-10)求得,j0(3.5) = -180o,L0(3.5)=26.8dB,采用滯后超前校正,a=50,例6-5圖1,26.8,73,例6-5圖2,ts=1.65s,74,第七章 線性離散系統(tǒng)分析,7-1 信號的采樣與保持 7-2 z變換 7-3 脈沖傳遞函數(shù) 7-4 離散系統(tǒng)性能,75,零階保持器,T=0.4,T=0.8,T=0.2,T=3,76,Z域等效變換,1(t)+t*=1(t)*+t*,E*(s),77,采樣信號的頻譜,s=2/T為采樣角頻率,Cn是傅氏系數(shù),其值為:,連續(xù)信號的頻譜為,采樣信號的頻譜為,h,-h,0,h,-h,0,s,2s,3s,-3s,-2s,-s,s = 2h,濾波器的寬度滿足什么,條件時能從,得到,?!,s 2h,或:,T/h,78,脈沖響應(yīng),79,脈沖響應(yīng),80,脈沖響應(yīng),81,脈沖傳遞函數(shù)的意義,c*(t),G(z),r*(t)=(t),c(t)=K(t),r*(t)=(t-T),c(t)=K(t-T),r*(t)=r(nT)(t-nT),c(t)= r(nT)K(t-nT),線性定常離散系統(tǒng)的位移不變性,根據(jù)離散卷積定義得知,下式右邊的Z變換為R(z)K(z),C(z)=R(z

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論