數(shù)學奧林匹克模擬試卷和答案a.doc_第1頁
數(shù)學奧林匹克模擬試卷和答案a.doc_第2頁
數(shù)學奧林匹克模擬試卷和答案a.doc_第3頁
數(shù)學奧林匹克模擬試卷和答案a.doc_第4頁
數(shù)學奧林匹克模擬試卷和答案a.doc_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

數(shù)學奧林匹克模擬試A卷_年級_班 姓名_得分_1.一個正方體的棱長增加原長的1/2 ,它的表面積比原表面積增加百分之_.2.體育用品商店有籃球和排球共45個,其中籃球占60%,當賣出一批籃球后,籃球占現(xiàn)存總數(shù)的25%,賣出的籃球是_個.3.把一個正方形的一邊減少20%,另一邊增加2米,得到一個長方形.它與原來的正方形面積相等.那么正方形的面積是_平方米.4.已知甲校學生數(shù)是乙校學生數(shù)的40%,甲校女生數(shù)是甲校學生數(shù)的30%,乙校男生數(shù)是乙校學生數(shù)的42%,那么,兩校女生數(shù)占兩校學生總數(shù)的百分之_.5.有甲、乙、丙三個車間,它們工人總數(shù)少于1000人,其中女工人數(shù)恰好是男工人數(shù)是43%,已知甲車間比乙車間多38人,丙車間比甲車間多70人.三個車間總人數(shù)是_.6.有濃度為3.2%的食鹽水500克,為了把它變成濃度是8%的食鹽水,需要使它蒸發(fā)掉_克的水.7.某校四年級原有兩個班,現(xiàn)在要重新編為三個班.將原一班的1/3與原二班的1/4組成新一班,將原一班的1/4與原二班的1/3組成新二班,余下的30人組成新三班.如果新一班的人數(shù)比新二班的人數(shù)多10%,那么原一班人數(shù)有_人.8.A種酒精中純酒精的含量為40%,B種酒精中純酒精的含量為36%,C酒精中純酒精的含量為35%.它們混合在一起得到了純酒精的含量為38.5%的酒精11升.其中B種酒精比C種酒精多3升.那么其中的A種酒精有_升.9.某商店有兩件商品,其中一件商品按成本增加25%出售,一件商品按成本減少20%出售,售價恰好相同,那么b兩件商品售價總和/bb兩件商品成本總和/b _ .10.有甲、乙兩個同樣的杯子,甲杯中有半杯清水,乙杯中盛滿了含50%酒精的溶液.先將乙杯中酒精溶液的一半倒入甲杯,攪勻后,再將甲杯中酒精溶液的一半倒入乙杯.問這時乙杯中的酒精是溶液的_分之_.11.A容器有濃度為2%的鹽水180克,B容器中有濃度9%的鹽水若干克.從B容器中倒出240克到A容器,然后再把清水倒入B容器,使A、B兩容器中鹽水的重量相等.結果發(fā)現(xiàn),現(xiàn)在兩個容器中鹽水濃度相同,那么B容器中原來有9%的鹽水多少克?12.有兩包糖,每包糖內都有奶糖、水果糖和巧克糖.(1)第一包的粒數(shù)是第二包粒數(shù)的 ;(2)第一包糖中奶糖占25%,第二包中水果糖占50%;(3)巧克力糖在第一包糖中所占的百分比是在第二包糖中所占百分比的兩倍.當兩包糖合在一起時,巧克力糖占28%,那么水果糖占百分之幾?13.甲容器中有純酒精11升,乙容器中有水15升,第一次將甲容器中的一部分純酒精倒入乙容器,使酒精與水混合.第二次將乙容器中一部分混合液倒入甲容器.這樣甲容器中純酒精含量為62.5%,乙容器中酒精含量為25%,那么,第二次從乙容器倒入甲容器的混合液多少升?14.新昌茶葉店運到一級茶和二級茶一批,其中二級茶的數(shù)量是一級茶的1/2 .一級茶的買進價每千克24.8元;二級茶的買進價是每千克16元.現(xiàn)在照買進價加價12.5%出售,當二級茶全部售完,一級茶剩下1/3時,共盈利460元.那么,運到的一級茶有多少千克? 數(shù)學奧林匹克模擬試卷A(答案)第1道題答案:(1+1/2)(1+1/2)6()125%第2道題答案:4560%-1825%(1-25%)=6(個)第3道題答案:2(1-20%)20%sup2/sup=64(平方米)第4道題答案:40%30%+(1-42%)(1+40%)=50%第5道題答案:全廠總人數(shù)比乙車間人數(shù)的3倍還多38+(38+70)=146人,又全廠人數(shù)是43+100=143的倍數(shù),在小于1000人的143的倍數(shù)中,僅572滿足條件,故全廠共有572人.第6道題答案:500-5003.2%8%=300(克)第7道題答案:原來兩班總人數(shù)為301-(1/3+1/4)=72(人),新一班與新二班人數(shù)之和是72-30=42(人),新二班人數(shù)為721+(1+10%)=20(人).新一班人數(shù)為20(1+10%)=22(人),原一班人數(shù)與原二班人數(shù)之差為(22-20)(1/3-1/4)=24(人),原一班人數(shù)為(72+24)2=48(人).第8道題答案:假設B種酒精減少3升,就與C種酒精升數(shù)相等,則A、B、C三種酒精總升數(shù)是11-3=8(升),其純酒精含量是1138.5%-336%=3.155(升).假設8升都是A種酒精,純酒精含量是840%=3.2(升),造成純酒精含量超出3.2-3.155=0.045(升),用B種酒精1升和C種酒精合起來與A種酒精升數(shù)置換直到消去0.045升為止:8-2(3.2-3.155)(240%-136%-135%)=7(升).第9道題答案:(1+1)112.5%+1(1-20%)=40/41第10道題答案:50%1/2+50%1/21/2=3/8第11道題答案:(1802%+2409%2)9%=520(克)第12道題答案:把第一包糖的粒數(shù)看作單位“1”,第二包糖粒數(shù)是第一包糖粒數(shù)的3/2,巧克力在第二包中占的百分比是第一包中占的百分比的1/2,因此巧克力在第二包糖中的粒數(shù)是在第一包糖中粒數(shù)的3/21/2=3/4.巧克力在第一包的粒數(shù)占兩包所有糖的粒數(shù)的28%(1+3/4)=16%,巧克力在第一包糖中的粒數(shù)占第一包糖粒數(shù)的16%(1+2/3)=40%,這樣水果糖在第一包糖中的粒數(shù)占第一包糖的總粒數(shù)的1-25%-40%=35%.第13道題答案:因25%:(1-25%)=1:3,故第一次要從甲容器倒5升純酒精到乙容器,這樣就使乙容器中純酒精之比恰好是5:15=1:3.又因62.5%:(1-62.5%)=5:3,故第二次倒后,要使甲容器中純酒精與水之比是5:3,設從甲容器倒入乙容器的混合酒精為1份,水算作3份,那么甲容器中剩下酒精為11-5=6(升)應算作4份,這樣恰好配成5=3,所以倒過來的混合液總共是1+3=4(份).因此也應是6升.第14道題答案:46012.5%16+24.8(1-1/3)2=75(千克). 數(shù)學奧林匹克模擬試B卷_年級_班 姓名_得分_1.甲數(shù)比乙數(shù)少20%,那么乙數(shù)比甲數(shù)多百分之_.2.人體每天水分排出量(單位為毫升)如圖所示.由肺呼出的水分占每天水分排出的百分之_.(400:肺呼出;500: ;100:固體廢物;1500:水性廢物) 3.有一堆糖果,其中奶糖占45%,再放入16塊水果糖后,奶糖就只占25%.那么,這堆糖中有奶糖_塊.4.把25克鹽放進100克水里制成鹽水,制成的這種鹽水,含鹽量是百分之幾?有200克這樣的鹽水,里面含鹽_克.5.一個有彈性的球從A點落下到地面,彈起到B點后又落下高20厘米的平臺上,再彈起到C點,最后落到地面(如圖).每次彈起的高度都是落下高度的80%,已知A點離地面比C點離地面高出68厘米,那么C點離地面的高度是_厘米.6.某次會議,昨天參加會議的男代表比女代表多700人,今天男代表減少10%,女代表增加了5%,今天共1995人出席會議,那么昨天參加會議的有_人.7.有甲、乙兩家商店,如果甲店的利潤增加20%,乙店的利潤減少10%,那么這兩店的利潤就相同,原來甲店的利潤是原來乙店的利潤的百分之_.8.開明出版社出版某種書.今年每冊書的成本比去年增加10%.但是仍保持原售價,因此每本盈利下降了40%,但今年的發(fā)行冊數(shù)比去年增加80%,那么今年發(fā)行這種書獲得的總盈利比去年增加的百分數(shù)是_.9.甲、乙二人分別從A、B兩地同時出發(fā),相向而行,出發(fā)時他們的速度比是3:2.他們第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,這樣,當甲到達B地時,乙離A還有14千米.那A、B兩地間的距離是_.10.有兩堆棋子,A堆有黑子350個和白子500個,B堆有黑子400個和白子100個,為了使A堆中黑子占50%,B堆中黑子占75%,要從B堆中拿到A堆;黑子_個,白子_個.11.算出后,湊成5的整數(shù)倍(只增不減),按這一定價方法得到:1件50元;2件95元;3件140元;4件185元;,如果每件成本是整元,那么這一商品每件成本是多少元?(1+20%)11.有一位精明的老板對某商品用下列辦法來確定售價:設商品件數(shù)是N,那么N件商品售價(單位:元)按:每件成本 。12.盈利百分數(shù)= (買出價-買入價)/買入價100%某電子產(chǎn)品去年按定價的80%出售,能獲得20%的盈利,由于今年買入價降低,按同樣定價的75%出售,卻能獲得25%的盈利,那么今年買入價/去年買入價是多少?13.北京九章書店對顧客實行一項優(yōu)惠措施:每次買書200元至499.99元者優(yōu)惠5%,每次買500元以上者(包含500元)優(yōu)惠10%.某顧客到書店買了三次書,如果第一次與第二次合并一起買,比分開買便宜13.5元;如果三次合并一起買比三次分開買便宜38.4元.已經(jīng)知道第一次的書價是第三次書價的5/8,問這位顧客第二次買了多少錢的書.14.有A、B、C三根管子,A管以每秒4克的流量流出含鹽20%的鹽水,B管以每秒6克的流量流出含鹽15%的鹽水,C管以每秒10克的流量流出水.C管打開后開始2秒不流,接著流5秒,然后又停2秒,再流5秒三管同時打開,1分鐘后都關上,這時得到的混合液中含鹽百分之幾? 數(shù)學奧林匹克模擬試卷B(答案)第1道題答案:20%(1-20%)=25%.第2道題答案:400(400+500+100+1500)=16%.第3道題答案:16(1-25%)25%-(1-45%)45%=9(塊).第4道題答案:含鹽量是: 25/(25+100)100%=20%200克這樣的鹽水里面含鹽20020%=40克 第5道題答案:68+20(1-80%)(1-80%80%)-68=132(厘米)第6道題答案:(1995-70090%)(1+5%+90%)2+700=2100(人)第7道題答案:(1-10%)(1+20%)=75%第8道題答案:假設每冊書成本為4元,售價5元,每冊盈利1元,而現(xiàn)在成本為4(1+10%)=4.4元,售價仍為5元,每冊盈利0.6元,比原來每冊盈利下降了40%.(1+80%)=180(冊).但今年發(fā)行冊數(shù)比去年增加80%,若去年發(fā)行100冊,則今年發(fā)行100原來盈1100=100(元),現(xiàn)在盈利0.6180=108(元).故今年獲得的總盈利比去年增加了(108-100)100=8%.第9道題答案:相遇到后,甲乙速度之比為1(1+20%): 2/3(1+30%)=18:13,故A、B兩地之間的距離是14(3/5-2/518/13)=45(千米)第10道題答案:設要從B堆中拿到A堆黑子X個,白子Y個,則有:350+X=(350+X)+(500+Y)50% 400-X=(400-X)+(100+Y)70%解得X=175,Y=25.第11道題答案:45(1+20%)1=37.5.第12道題答案:75%(1+25%)80%(1+20%)=9/10.第13道題答案:5%=270(元),故第三次書價必定在第一次與第二次共應付款13.5500-270=230(元)以上,這樣才能使三次書價總數(shù)達到優(yōu)惠10%的錢數(shù).如果分三次購買,第三次的書價也能優(yōu)惠5%,從而有:第三次書價總數(shù)為518-270=248(元)第一次書價總數(shù)為2485/8=155(元)第二次書價總數(shù)為270-155=115(元)第14道題答案:因60(5+2)=84,故C管流水時間為58+2=42(秒),從而混合液中含鹽百分數(shù)為(4020%+615%)60(4+6)60+1042100%=10% 數(shù)學奧林匹克模擬試E卷_年級_班 姓名_得分_ 1.已知1999+4=9991,其中, 是自然數(shù),那么= _. 2.數(shù)學測試卷有20道題.做對一道得7分;做錯一道扣4分;不答得0分.張紅得了100分,她有_道題沒答. 3.x是自然數(shù), ,字母a表示一個數(shù)字,x是_ 4.不定方程12x+21y=17的整數(shù)解是_. 5.某青年1997年的年齡等于出生年份各數(shù)字的和,那么,他的出生年份是_. 6.如果在分數(shù)28/43的分子分母上分別加上自然數(shù)a、b,所得結果是7/12,那么a+b的最小值等于_. 7.40只腳的蜈蚣與3個頭的龍同在一個籠子中,共有26個頭和298只腳,若40只腳的蜈蚣有1個頭,那么3個頭的龍有_只腳. 8.甲、乙兩個小隊的同學去植樹.甲小隊一人植樹6棵,其余每人都植樹13棵;乙小隊有一人植樹5棵,其余每人都植樹10棵.已知兩小隊植樹棵數(shù)相等,且每小時植樹的棵數(shù)大于100而不超過200,那么甲、乙兩小隊共有_人.9.小明用5天時間看完了一本200頁的故事書.已知第二天看的頁數(shù)比第一天多,第三天看的頁數(shù)是第一、二兩天看的頁數(shù)之和,第四天看的頁數(shù)是第二、三兩天看的頁數(shù)之和,第五天看的頁數(shù)是第三、四兩天看的頁數(shù)之和.那么,小明第五天至少看了_頁. 10.一群猴子采摘水蜜挑.猴王不在的時候,一個大猴子一小時可采摘15公斤,一個小猴子一小時可采11公斤;猴王在場監(jiān)督的時候,大猴子的1/5和小猴子的1/5必須停止采摘,去伺侯猴王.有一天,采摘了8小時,其中只有第一小時和最后一小時有猴王在場監(jiān)督,結果共采摘3382公斤水密桃,那么在這個猴群中,大猴子共有_個. 11.今有公雞每只五個錢,母雞每只三個錢,小雞每個錢三只.用100個錢買100只雞,問公雞、母雞、小雞各買了多少只? 12.某地收取電費的標準是:每月用電不超過50度,每度收5角;如果超過50度,超出部分按每度8角收費.某月甲用戶比乙用戶多交3元3角電費,這個月甲、乙各用了多少度電? 13.哲洙替爸爸買了50張圣誕節(jié)卡片.他先到“甲”文具店去買了幾張每張500分錢的卡片,剩余的卡片到“乙”文具店去買了.“乙”文具店的一張卡價格是以每百分為單位,且小于2000分.哲洙買了50張卡片共花了30400分.請你寫出他在“乙”文具店買的卡片數(shù)量的所有可能情形. 14.現(xiàn)有兩小堆小石頭,如果從第一堆中取出100塊放進第二堆,那么第二堆比第一堆多一倍,相反,如果從第二堆中取出一些放進第一堆,那么第一堆比第二堆多五倍.問第一堆中可能的最少石頭塊數(shù)等于多少?并在這種情況下求出第二堆的石頭塊數(shù). 小蘿卜頭 發(fā)表于 2008-6-30 10:25數(shù)學奧林匹克模擬試卷E(答案)第1道題答案: 1998.提示: 是小于4的奇數(shù),檢驗=1或3兩種情況即可.第2道題答案:設張紅做對x道題,做錯y道題,依題意得:7x-4y=100 所以x=(100+4y)100/7=14 2/7.又x+y20 所以x20-y20,故14 2/7x20.又4|4 y,4|100,由知4|7 x,又4與7互質,所以4| x,故 x=16或20.當x=20時,由得y=10,與產(chǎn)生矛盾.因此x=16,代入得y=3.張紅共有20-x-y=1(道)題沒做.第3道題答案:根據(jù)題意,x/810=(100a+25)/999,整理得,x=810(100a+25)/999=3025(4a+1)/37.因為x為自然數(shù),37是質數(shù),所以4a+1一定能被37整除,推知a=9,因此x=3025=750.第4道題答案: 沒有整數(shù)解. 4若方程有整數(shù)解,則3|12x,3|21y ,因此3|12x+21y,且3|17,產(chǎn)生矛盾,因此原方程沒有整數(shù)解.第5道題答案:設他出生年份為19ab,依題意,得:1997-19ab=1+9+a+b 整理得: 11a+2b=87所以a=(87-2b)/11由0b9得6 3/11=(87-29)/11(87-2b)/11 87/11=7 10/11,即6 3/11a7 10/11. 故a=7,從而b=5,他出生于1975年.第6道題答案:依題意,有(28+a)/(43+b)=7/12,于是可得12(28+a)=7(43+b)即 12a+35=7b 顯然,7|35.又因(12,7)=1,故7|a.由知, b隨a增大而增大,所以a取最小值7時, b也取最小值,是17. 所以, a+b的最小值是7+17=24.第7道題答案:設有x只蜈蚣,y只三頭龍,每只三頭龍有n只腳,依題意得方程組:x+3y=26 40x+ny=29840-,得 ,即(120-n)y=2753 由于x和y都是正整數(shù),從式得y8.又因為120-n120a,所以上式只有兩組解: b=20, a=12; b=25, a=5.將這兩組解分別代入2a+3b,得到第五天至少看了84頁.第10道題答案: 以5只大猴子為一組,根據(jù)題意,一組大猴子這天可采摘1538(千克).同理,以5只小猴子為一組,這天可采摘1138(千克).設有大猴子x組,小猴子y組,則有1538x+1138y=3382,15x+11y=89 . 易知其整數(shù)解為x=3, y=4,所以有大猴子53=15(只).第11道題答案:設公雞、母雞、小雞各買x, y, z只,由題意列方程組:5x+3y+1/3 z=100x+y+z=100 3-整理得7x+4y=100. 又4|4 y,4|100,所以4|7 x,又(4,7)=1,所以4| x.又x=(100-4y)/7100/7=14 2/7.所以x=4,8或12. x=4時,y=18, z=78; x=8時,y=11,z=81; x=12時,y=4,z=84.即可能有三種情況:4只公雞,18只母雞,78只小雞;或8只公雞,11只母雞,81只小雞;12只公雞,4只母雞,84只小雞.第12道題答案: 因為33既不是5的倍數(shù)又不是8的倍數(shù),所以甲用電超過50度,乙用電不足50度.設甲用電(50+x)度,乙用電(50- y)度.因為甲比乙多交33角電費,所以有:8x+5y=33. 容易看出x=1時,y=5.推知甲用電51度,乙用電45度.第13道題答案:設哲洙在乙文具店買了x張卡片,花了y100分.由共花錢數(shù)可列方程500(50-x)+y100x=30400整理得 x(y-5)=54因為x是小于50的54的約數(shù),則x與y的關系如下表:x 1 2 3 6 9 18 27 y-5 54 27 18 9 6 3 2 因為乙文具店一張卡片的價格小于2000分,推知y小于2000100=20,即y-50,所以a3.將a=1,2,3代入知,只有a=2符合要求,此時n=260(個).第3道題答案:設共分為x組.由樹苗總數(shù)可列方程9x-2=nx+20(9-n)x=22因為22=122=211, n是小于9的質數(shù),對比上式得x=11(組).第4道題答案:顯然 只能取1,2,3.當z=1時, ,其自然數(shù)解為x=2, y=4; x=5, y=2.當z=2時, ,其自然數(shù)解為x=3, y=1.當z=3時, ,顯然無自然數(shù)解.所以原方程的自然數(shù)解為: x=2 x=5 x=3y=4 y=2 y=1z=1 z=1 z=2第5道題答案:8371692.設電話號碼的前三位為x,后三位y,第四位為a(a0).由題意有10x+a+y=9063 x+1000a+y=2529 -,化簡得x=726+111a.當a=1時, x=837, y=692;當a2時, y0,不合題意. 所以電話號碼為8371692.第6道題答案:由題意有3a+2=6b+5=8c+7.解這個不定方程,得a=7,b=3,c=2.第7道題答案:設全家共喝了x碗牛奶和y碗咖啡,依題意得:1/4 x+1/5 y=1 整理得3x+2y=12.易得其自然數(shù)解為x=2, y=3.故共喝牛奶和咖啡2+3=5(碗).因此,全家有5口人.第8道題答案:設有女職工x人,男職工y人,那么有孩子 人.這個條件說明3| x+ y.由已知10x+13y+(x+y)/3 6=216 即 4x+5y=72 , 4(x+y)+y=72由12|4(x+ y),12|72.所以12| y,又y=(72-4x)/572/5=14 4/5.所以, y=12, x=3.即有女職工3人.第9道題答案:畫個示意圖就不難推知:小正方體中僅兩面涂色的每條棱上都有,并在同一個方向的4條棱上2面涂色的小正方體數(shù)相等,設它們分別為x,y,z,則4(x+y+z)=28xyz=12剝去所有涂色的小塊,得到上圖.由上面兩上算式可以推算出x=3,y=z=2,僅1面涂色彩正方體有:(xy+yz+xz)2=(32+22+32)2=32 (塊).原來長方體的體積為V=(x+2)(y+2)(z+2)=544=80(立方分米).第10道題答案:設支票上的元數(shù)與角、分數(shù)分別為x和y,則可列得方程(100y+x)-350=2(100x+y),其中x,y為整數(shù)且0x,y100.化簡方程得98y=199x+350由此推知2xy且為x偶數(shù),其可能取值為2,4,48.又y=(199x+350)/98=2x+3+(3x+56)/98, 563x+56348+56=200 所以3x+56=98或982. 所以x=42或x=46 2/3(舍去). 故x=42,此時y=32.即李林的支票面額為14.32元,競換時誤看成32.14元,李林應退款額為32.14-14.32=17.82元.第11道題答案:設起初有x輛汽車,開走一輛汽車后每車乘n人,依題意,得22x+1=n(x-1)所以n=(22x+1)/(x-1)=22+23/(x-1)又n, x為整數(shù),所以(x-1)|23,故x-1=1或23,即x=2或x=24.若x=2,則 與n32產(chǎn)生矛盾.因此x=24或n=23,故起初有24輛汽車,有旅客22 x+1=529(名).第12道題答案:設蘋果、梨子、杏子分別買了x.y.z個,則200x+80y+30z=5000x+y+z=40消去z得17x+5y=380 所以 x=(380-5y)/17 由0y40得10 10/17=(380-540)17(380-5y)/17380/17=22 6/17 即10 10/17x20個.第13道題答案:設獲一、二、三等獎的人數(shù)分別為 ,根據(jù)題意有: 6x+3y+2z=22 9x+4y+z=222得18x+8y+22=44-得12x+5y=22 解求得整數(shù)解為x=1, y=2.代入可求得z=5.答:獲得一等獎的有1人,獲得二等獎的有2人,獲三等獎的有5人.第14道題答案:設買A種物品a個, B種物品b個,找回100元的m張,10元的n張,則有:590a+670b=10000-100m-10n670a+590b=10000-10m-100n其中ba,na,n10知mn10,因此, m-n=8,從而b-a=9.由此推知n=9, m=1, b=a+9.代入式,解得a=3. B=12.答:購A物3個,B物12個. 小蘿卜頭 發(fā)表于 2008-6-30 14:49數(shù)學奧林匹克模擬試H卷1對于324和612,把第一個數(shù)加上3,同時把第二個數(shù)減3,這算一次操作,操作_次后兩個數(shù)相等.2. 對自然數(shù)n,作如下操作:各位數(shù)字相加,得另一自然數(shù),若新的自然數(shù)為一位數(shù),那么操作停止,若新的自然數(shù)不是一位數(shù),那么對新的自然數(shù)繼續(xù)上面的操作,當?shù)玫揭粋€一位數(shù)為止,現(xiàn)對1,2,3,1998如此操作,最后得到的一位數(shù)是7的數(shù)一共有_個.3. 在1,2,3,4,5,59,60這60個數(shù)中,第一次從左向右劃去奇數(shù)位上的數(shù);第二次在剩下的數(shù)中,再從左向右劃去奇數(shù)位上的數(shù);如此繼續(xù)下去,最后剩下一個數(shù)時,這個數(shù)是_.4. 把寫有1,2,3,,25的25張卡片按順序疊齊,寫有1的卡片放在最上面,下面進行這樣的操作:把第一張卡片放到最下面,把第二張卡片扔掉;再把第一張卡片放到最下面,把第二張卡片扔掉;按同樣的方法,反復進行多次操作,當剩下最后一張卡片時,卡片上寫的是_.5. 一副撲克共54張,最上面的一張是紅桃K.如果每次把最上面的4張牌,移到最下面而不改變它們的順序及朝向,那么,至少經(jīng)過_次移動,紅桃K才會出現(xiàn)在最上面.6. 寫出一個自然數(shù)A,把A的十位數(shù)字與百位數(shù)字相加,再乘以個位數(shù)字,把所得之積的個位數(shù)字續(xù)寫在A的末尾,稱為一次操作.如果開始時A=1999,對1999進行一次操作得到19992,再對19992進行一次操作得到199926,如此進行下去直到得出一個1999位數(shù)為止,這個1999位數(shù)的各位數(shù)字之和是_.7. 黑板上寫有1987個數(shù):1,2,3,,1986,1987.任意擦去若干個數(shù),并添上被擦去的這些數(shù)的和被7除的余數(shù),稱為一個操作.如果經(jīng)過若干次這種操作,黑板上只剩下了兩個數(shù),一個是987,那么,另一個數(shù)是_.8.下圖中有5個圍棋子圍成一圈.現(xiàn)在將同色的兩子之間放入一個白子,在異色的兩子之間放入一個黑子,然后將原來的5個拿掉,剩下新放入的5個子中最多能有_個黑子.attach895/attach9. 在圓周上寫上數(shù)1,2,4然后在每兩個相鄰的數(shù)之間寫上它們的和(于是共得到6個數(shù):1,3,2,6,4,5)再重復這一過程5次,圓周上共出現(xiàn)192個數(shù),則所有這些數(shù)的和是_.10. 在黑板上任意寫一個自然數(shù),然后用與這個自然數(shù)互質并且大于1的最小自然數(shù)替換這個數(shù),稱為一次操作,那么最多經(jīng)過_次操作,黑板上就會出現(xiàn)2.11甲盒中放有1993個白球和1994個黑球,乙盒中放有足夠多個黑球.現(xiàn)在每次從甲盒中任取兩球放在外面,但當被取出的兩球同色時,需從乙盒中取出一個黑球放入甲盒;當被取出的兩球異色時,便將其中的白球再放回甲盒,這樣經(jīng)過3985次取、放之后,甲盒中剩下幾個球?各是什么顏色的球?12如圖是一個圓盤,中心軸固定在黑板上,開始時,圓盤上每個數(shù)字所對應的黑板處均寫著0,然后轉動圓盤,每次可以轉動 的任意整數(shù)倍,圓盤上的四個數(shù)將分別正對著黑板上寫數(shù)的位置.將圓盤上的數(shù)加到黑板上對應位置的數(shù)上,問:經(jīng)過若干次后,黑板上的四個數(shù)是否可能都是1999?attach894/attach13. 有三堆石子,每次允許由每堆中拿掉一個或相同數(shù)目的石子(每次這個數(shù)目不一定相同),或由任一堆中取一半石子(如果這堆石子是偶數(shù)個)放入另外任一堆中,開始時三堆石子數(shù)分別為1989,989,89.如按上述方式進行操作,能否把這三堆石子都取光?如行,請設計一種取石子的方案,如不行,說明理由.14. 如圖,圓周上順次排列著1、2、3、12這十二個數(shù),我們規(guī)定:相鄰的四個數(shù)a1、a2、a3、a4順序顛倒為a4、a3、a2、a1,稱為一次“變換”(如:1、2、3、4變?yōu)?、3、2、1,又如:11、12、1、2變?yōu)?、1、12、11).能否經(jīng)過有限次“變換”,將十二個數(shù)的順序變?yōu)?、1、2、3、8、10、11、12(如圖)?請說明理由.attach893/attachi 本帖最后由 小蘿卜頭 于 2008-6-30 15:51 編輯 /i 小蘿卜頭 發(fā)表于 2008-6-30 16:25數(shù)學奧林匹克模擬試卷H(答案)第1道題答案:每操作一次,兩個數(shù)的差減少6,經(jīng)(612-324) 6=48次操作后兩個數(shù)相等.第2道題答案:由于操作后所得到的數(shù)與原數(shù)被9除所得的余數(shù)相同,因此操作最后為7的數(shù)一定是原數(shù)除以9余7的數(shù),即7,16,25,,1996,一共有(1996-7)9+1=222(個)第3道題答案:第一次操作后,剩下2,4,6,60這30個偶數(shù);第二次操作后,剩下4,8,12,60這15個數(shù)(都是4的倍數(shù));第三次操作后,剩下8,16,24,56這7個數(shù)(都是8的倍數(shù));第四次操作后,剩下16,32,48這3個數(shù);第五次操作后,剩下一個數(shù),是32.第4道題答案:第一輪操作,保留1,3,5,,25共13張卡片;第二輪保留3,7,11,15,19,23這6張卡片;第三輪保留3,11,19這3張卡片;接著扔掉11,3;最后剩下的一張卡片是19.第5道題答案:因為54,4=108,所以移動108張牌,又回到原來的狀況.又因為每次移動4張牌,所以至少移動108 4=27(次).第6道題答案:按照操作的規(guī)則,尋找規(guī)律知,A=1999時得到的1999位數(shù)為:19992668646000.其各位數(shù)字和為1+9+9+9+2+6+6+8+6+4 +6=66第7道題答案:黑板上的數(shù)的和除以7的余數(shù)始終不變.7=282154(1+2+3+1987)又1+2+3+1987=(19871988)/2=1987994=19871427是7的倍數(shù).所以黑板上剩下的兩個數(shù)之和為7的倍數(shù).又987=7141是7的倍數(shù),所以剩下的另一個數(shù)也應是7的倍數(shù),又這個數(shù)是某些數(shù)的和除以7的余數(shù),故這個數(shù)只能是0.第8道題答案:4個提示:因為5個子不可能黑白相間,所以永遠不會得到5個全是黑子.第9道題答案:5103記第i次操作后,圓周上所有數(shù)的和為ai,依題意,得asubi+1/sub=2asubi/sub+asubi/sub=3asubi/sub.又原來三數(shù)的和為asub0/sub=1+2+4=7,所以asub1/sub=3asub0/sub=21,asub2/sub=3asub1/sub=63,asub3/sub=3asub2/sub=189,asub4/sub=3asub3/sub=567,asub5/sub=3asub4/sub=1701,asub6/sub=3asub5/sub=5103,即所有數(shù)的和為5103.第10道題答案:2如果寫的是奇數(shù),只需1次操作;如果寫的是大于2的偶數(shù),經(jīng)過1次操作變?yōu)槠鏀?shù),再操作1次變?yōu)?.第11道題答案:由操作規(guī)則知,每次操作后,甲盒中球數(shù)減少一個,因此經(jīng)過3985次操作后,甲盒中剩下1993+1994-3985=2個球.每次操作白球數(shù)要么不變,要么減少2個.因此,每次操作后甲盒中白球數(shù)的奇偶性不變;即白球數(shù)為奇數(shù).因此最后剩下的2個球中,白球1個,故另一個必為黑球.第12道題答案:每次加上的數(shù)之和是1+2+3+4=10,所以黑板上的四個數(shù)之和永遠是10的整數(shù)倍.因此,無論如何操作,黑板上的四個數(shù)不可能都是1999.第13道題答案:要把三堆石子都取光是不可能的.按操作規(guī)則,每次拿出去的石子總和是3的倍數(shù),即不改變石子總數(shù)被3除的余數(shù).而1989+989+89=3067被3除余1,三堆石子取光時總和被3除余0.所以,三堆石子都取光是辦不到的.第14道題答案:能attach896/attach解:如上圖所示,經(jīng)過兩次變換,10、11、12三個數(shù)被順時針移動了兩個位置.仿此,再經(jīng)過3次這樣的兩次變換,10、11、12三個數(shù)又被順時針移動了六個位置,變?yōu)橄聢D,圖中十二個數(shù)的順序符合題意. 小蘿卜頭 發(fā)表于 2008-6-30 16:36數(shù)學奧林匹克模擬試I卷1.書架上有6本不同的畫報、10本不同科技書,請你每次從書架上任取一本畫報、一本科技書,共有_種不同的取法.2.七個相同的球,放入四個不同的盒子里,每個盒子至少放一個.不同的放法有_種.3.用0,1,2,3,4,5,6,7,8,9十個數(shù)字,能夠組成_個沒有重復數(shù)字的三位數(shù).4.有一個面積為693平方米的長方形,其周長最多可有_種不同的數(shù)值.5.兩個點可以連成一條線段,3個點可以連成三條線段,4個點可以連成六條線段,5個點可以連成幾條線段?6個點可以連成_條線段. 6.學雷鋒小組的一次集會,參加會的人每兩人握手一次,共握手36次,這個小組共有_人. 7.數(shù)出圖中長方形(包括正方形)的總個數(shù)是_.attach897/attach 8.用9枚釘子組成 方陣,用橡皮筋勾在3枚釘子上,組成一個三角形,共可組成_個三角形. 9.有5人參加的學雷鋒小隊上街宣傳交通規(guī)則,站成一排,其中2名隊長不排在一起,一共有_種排法. 10.在圖中畫出 方格中(n是自然數(shù))每一列中的3個方格中分別用紅、白、藍三種顏色任意染色(每列中三格的顏色各不相同).最少需要_列才能保證至少使兩列染色的方式相同.attach898/attach 11.在 的棋盤上可以找到多少個形如右圖所示的“凸”字形圖形?attach899/attach 12.某城市的街道非常整齊(如圖),從西南角A處走到東北角B處,要求走得最近的路,并且不能通過十字路口C(正在修路),共有多少種不同的走法?attach900/attach 13.一個自然數(shù),如果它順著數(shù)和倒過來數(shù)都是一樣的,則稱這個數(shù)為“回文數(shù)”.例如1331, 7, 202都是回文數(shù).而220則不是回文數(shù).問1到6位的回文數(shù)一共有多少個? 14.如圖,把A、B、C、D、E這個五部分用四種不同的顏色著色,且相鄰的部分不能使用同一種顏色,不相領的部分可以使用同一種顏色.那么這幅圖一共有多少種不同的著色方法?attach901/attach 小蘿卜頭 發(fā)表于 2008-6-30 16:42數(shù)學奧林匹克模擬試卷I(答案)第1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論