8.導(dǎo)體和介電質(zhì)中的靜電場大學(xué)物理習(xí)題答案.pdf_第1頁
8.導(dǎo)體和介電質(zhì)中的靜電場大學(xué)物理習(xí)題答案.pdf_第2頁
8.導(dǎo)體和介電質(zhì)中的靜電場大學(xué)物理習(xí)題答案.pdf_第3頁
8.導(dǎo)體和介電質(zhì)中的靜電場大學(xué)物理習(xí)題答案.pdf_第4頁
8.導(dǎo)體和介電質(zhì)中的靜電場大學(xué)物理習(xí)題答案.pdf_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

大學(xué)物理練習(xí)冊 導(dǎo)體和電介質(zhì)中的靜電場 34 導(dǎo)體 8 1 兩個同心導(dǎo)體球殼 A 和 B A 球殼帶電 Q 現(xiàn)從遠(yuǎn)處移來一帶 q 的帶電體 見圖 8 1 試問 請闡明 理由 1 兩球殼間的電場分布與無 q 時相比有無變化 2 兩球殼間的電勢差是否變化 3 兩球殼的電勢是否變化 4 如將 B 球殼接地 上述 1 2 3 的情況又如何 解解 1 由于靜電屏蔽作用 q 對兩球殼間的電場沒有影響 2 由 B A AB lEU d可知 由于E 不變 所以 AB U不變 即兩求殼間的 電勢差不變 3 由電勢疊加原理 q 使兩球殼的電勢升高 4 B 球殼接地 由于屏蔽作用 兩球殼間的電場分布不變 從而 AB U不 變 因 B 球殼接地 電勢不變 所以 A 球殼電勢也不變 8 2 半徑為 R1的導(dǎo)體球 A 帶電 q 其外同心地套一導(dǎo)體球殼 B 內(nèi)外半徑分別為 R2和 R3 見圖 8 2 且 R2 2R1 R3 3R1 今在距球心 O 為 d 4R1的 P 處放一點(diǎn)電荷 Q 并將球殼接地 問 1 球殼 B 所帶 的凈電荷 Q 為多少 2 如用導(dǎo)線將導(dǎo)體球 A 與球殼 B 相連 球殼所帶電荷 Q 為多少 解解 1 根據(jù)靜電平衡條件 A 球上電荷 q 分布在 A 球表面上 B 球殼內(nèi)表面帶電荷 q 由高斯定理可得 R r R21 0 2 0 4 r r q E A 球電勢 10210 2 0 8 11 4 d 4 d 2 1R q RR q r r q lEU R R B A A 設(shè) B 球殼外表面帶電荷 q 由電勢疊加原理 A 球球心處電勢 4030 2 010 0 44 44R Q R q R q R q U 10101010 4434 244R Q R q R q R q 101010 4434 8R Q R q R q 10 8R q UA Qq 4 3 B 球殼所帶凈電荷 qQqqQ 4 3 2 用導(dǎo)線將和相連 球上電荷與球殼內(nèi)表面電荷相消 QqQ 4 3 8 3 兩帶有等量異號電荷的金屬板 A 和 B 相距 5 0mm 兩板面積都是 150cm2 電量大小都是 2 66 l0 8C A 板帶正電并接地 電勢為零 如圖 8 3 所示 略去邊緣故應(yīng) 求 1 兩板間的電場強(qiáng)度E 2 B 板的電勢 3 兩板間離 A 板 1 0mm 處的電勢 解解 建立如圖所示的坐標(biāo)系 左右板的電荷面密度分別為 和 1 兩板間的電場強(qiáng)度 i S Q iiiEEE 0000 22 右左 N C100 2 105 11085 8 1066 2 5 212 8 ii C R3 R2 R1 B A Q P O 圖 8 2 Q B A 圖 8 1 q A B Q Q x O 大學(xué)物理練習(xí)冊 導(dǎo)體和電介質(zhì)中的靜電場 35 2 V100 1100 5100 2dd 335 0 B x A B B xExElEU B 3 V0 200d 0 0 1 310 xEU 8 4 點(diǎn)電荷 q 處在導(dǎo)體球殼的中心 殼的內(nèi)外半徑分別為 R1和 R2 見圖 8 4 求電場強(qiáng)度和電勢的分布 并畫出 E r 和 U r 曲線 解解 將空間分為三個區(qū)域 根據(jù)靜電平衡時電荷分布和高斯定理可得 1 Rr 0 2 0 1 4 r r q E R r R21 0 2 E 2 Rr 0 2 0 3 4 r r q E 電勢分布 1 Rr 111 4 ddd 210 31 2 1 RRr q rElElEU r R rr 21 RrR 20 3 4 dd 2R q rElEU rr 2 Rr r q lEU r 0 3 4 d 電介質(zhì) 8 5 三平行金屬板 A B 和 C 面積都是 200cm2 A B 相距 4 0mm A C 間相距 2 0mm B C 兩板都接 地 見圖 8 5 如果使 A 板帶正電 3 0 10 7C 在忽略邊緣效應(yīng)時 1 求 B 和 C 板上的感應(yīng)電荷以 及 A 板的電勢 2 若在 A B 板間充滿相對介電常數(shù)為 r 5 的均勻電介質(zhì) 求 B 和 C 板上的感應(yīng)電 荷以及 A 板的電勢 解解 1 外側(cè)面上電荷為零 其它面由左至右分別設(shè)為 1 2 3 4 面 A qSS 32 ABAC UU 即 ABAC dd 0 3 0 2 32 2 得 S qA 3 3 S qA 3 2 2 S qA 3 2 21 S qA 3 34 R2 R1 q 1 2 3 q q E r R2 R1 O U r R2 R1 O A C B 2mm 4mm 1 2 3 4 大學(xué)物理練習(xí)冊 導(dǎo)體和電介質(zhì)中的靜電場 36 C102 3 2 7 1 A C q Sq C101 3 7 4 A B q Sq V1026 2 3 2 3 00 2 AC A ACA d S q dU 2 AB r AC dd 0 3 0 2 32 5 2 可得 S qA 7 5 3 S qA 7 2 2 S qA 7 2 21 S qA 7 5 34 C10 7 6 7 2 7 1 A C q Sq C10 7 15 7 5 7 4 A B q Sq V1070 9 7 2 2 00 2 AC A ACA d S q dU 8 6 在一半徑為 R1的長直導(dǎo)線外 套有內(nèi)外半徑分別為 R1和 R2 相對介電常數(shù)為 r的護(hù)套 設(shè)導(dǎo)線沿軸 線單位長度上的電荷為 求空間的PED 解解 取同軸長為 l 半徑為 r 的圓柱面為高斯面 由高斯定理 rlDSD S 2d 1 Rr 02 rlD 0 D 0 E 0 P R r R21 lrlD 2 0 2 r r D 0 00 2 r r D E rr 0 0 2 1 1 r r EP r e 2 Rr lrlD 2 0 2 r r D 0 00 2 r r D E 0 0 EP e 8 7 半徑為 R0的金屬球 帶電 Q 置于一內(nèi)外半徑分別為 R1和 R2的均勻介質(zhì)球殼中 介質(zhì)的相對介電常 數(shù)為 r 如圖 8 7 所示 求 1 電場強(qiáng)度和電位移分布 2 電勢分布 3 介質(zhì)中的電極化強(qiáng)度 4 介質(zhì)殼內(nèi)外表面上的極化電荷面密度 解解 1 作一半徑為 r 的同心球面為高斯面 由高斯定理 0 Rr 0 1 E 10 RrR QrDSD S 2 22 4d 0 2 2 4 r r Q D 0 2 00 2 2 4 r r QD E 21 RrR QrDSD S 2 33 4d 0 2 3 4 r r Q D 0 2 00 3 3 4 r r QD E rr 2 Rr QrDSD S 2 44 4d 0 2 4 4 r r Q D 0 2 00 3 4 4 r r QD E R2 R1 q 1 2 3 q q 大學(xué)物理練習(xí)冊 導(dǎo)體和電介質(zhì)中的靜電場 37 2 0 Rr rErErElElEU R R R R R R rr ddddd 2 2 1 1 0 0 43211 2 2 1 1 0 d 4 d 4 d 4 2 0 2 0 2 0 R R R r R R r r Q r r Q r r Q 1 11 1 11 4 221100 RRRRR Q r 10 RrR rErErElEU R R R R rr dddd 2 2 1 1 4322 1 11 1 11 4 22110 RRRRr Q r 21 RrR rErElEU R R rr ddd 2 2 433 1 11 1 4 220 RRr Q r 2 Rr rElEU rr dd 44 r Q 0 4 3 0 2 30 4 1 1 r r Q EP r e 4 R1處介質(zhì)殼內(nèi)表面的法向指向球心 與P 反向 nP 1 2 1 4 1 1 R Q r R2處介質(zhì)殼外表面的法向向外 與P 同向 nP 2 2 2 4 1 1 R Q r 電容器 8 8 平行板電容器 極板而積為 S 板間距為 d 相對介電常數(shù)分別為 r1和 r2的兩種電介質(zhì)各充滿板間的 一半 如圖 8 8 所示 1 此電容器帶電后 兩介質(zhì)所對的極板上自由電荷面密度是否相等 為什么 2 此時兩介質(zhì)內(nèi)的電位移大小 D 是否相等 3 此電容器的電容多大 解解 1 設(shè)左右兩側(cè)極板上的電荷面密度分別為 1 和 2 因兩側(cè)電勢差相等 dEdE 21 即 21 EE 有 20 2 10 1 rr 即 2 2 1 1 rr 21rr 21 2 對平行板 D 由 21 可知 21 DD r1 r2 S d 圖 8 8 Q R0 O R2 R1 圖 8 7 r 大學(xué)物理練習(xí)冊 導(dǎo)體和電介質(zhì)中的靜電場 38 3 左右兩側(cè)電容分別為 d S C r 2 10 1 d S C r 2 20 2 兩電容并聯(lián) 2 21 0 21rr d D CCC 8 9 由半徑為 R2的外導(dǎo)體球面和半徑為 R1的內(nèi)導(dǎo)體球面組成的球形電容器中間 有一層厚度為 d 相對介 電常數(shù)為 r的電介質(zhì) 其中 d R2 R1 求該電容器的電容 解解 設(shè)兩導(dǎo)體球面分別帶電荷Q 和Q 由高斯定理 dRrR 11 0 2 0 1 4 r r Q E r 21 RrdR 0 2 0 2 4 r r Q E 兩球殼間的電勢差為 rErElEU R dR dR R R R ddd 2 1 1 1 2 1 21 2 1 1 1 d 4 d 4 2 0 2 0 R dR dR R r r r Q r r Q 11 11 1 4 21110 RdRdRR Q r 4 1210 1212 dRRR dRRRdRQ r r 4 1212 1210 dRRRdR dRRR U Q C r r 電場能量 8 10 一個電容器電容 C1 20 0 F 用電壓 V 1000V 的電源給該電容器充電 然后拆下電源 并用另一不 帶電的電容器 C2接于原來電源處 已知 C2 5 00 F 求 1 兩電容器各帶電多少 2 C1兩端 電勢差多大 3 C1能量損失多少 解解 1 兩電容并聯(lián)后總電量不變 設(shè) C1 C2各帶電 Q1 Q2 有 2 2 1 1 C Q C Q VCQQQ 121 解得 C106 11010 520 20 236 2 21 2 1 1 V CC C Q C104106 1101020 3236 112 QVCQ 2 C1兩端的電勢差 V800 1020 106 1 6 2 1 1 1 C Q V 3 能量損失 J280010 520 2 1 10 1020 2 1 2 1 2 1 26236 2 121 2 1 VCCVCW 8 11 兩同軸圓柱面 長度均為 l 半徑分別為 a 和 b 兩圓柱面之間充有相對介電常數(shù)為 r的均勻電介質(zhì) 當(dāng)這兩個圓柱面帶有等量異號電菏 Q 和 Q 時 求 1 在半徑為 r 處 a r b 電場的能量密度 是多少 r 處厚度為 dr 長度為 l 的圓柱簿殼中的電場能量為多少 2 電介質(zhì)中的總電能是多少 能否從總電場能量推算出圓柱形電容器的電容 不計(jì)邊緣效應(yīng) 解解 1 由高斯定理可得 r 處得電場強(qiáng)度大小為 rl Q r E 22 電場能量密度 222 2 22 8 2 2 1 2 1 lr Q rl Q Ew O R 圖 8 9 r R2 R1 d 大學(xué)物理練習(xí)冊 導(dǎo)體和電介質(zhì)中的靜電場 39 r 處 dr 厚度簿殼中的電場能量為 r rl Q rrl lr Q VwWd 4 d2 8 dd 2 222 2 2 電介質(zhì)中總能量 a b l Q r r l Q WW b aV ln 4 d 4 d 22 由電容器儲能公式 C Q W 2 2 1 可得 a b l W Q C ln 2 2 2 8 12 一平板空氣電容器的電容 C 0 001 微法拉 充電到電量為 Q 1 微庫后 將輸電線斷開 求 1 極 板間電勢差及此時的電場能 2 將兩極板拉開到原距離的兩倍 計(jì)算拉開前后場能的改變 并解釋 其原因 解解 1 V101 101 101 3 9 6 C Q U J105 101 101 2 1 2 1 4 9 262 C Q W 2 兩極板拉開時 極板上電荷保持不變 電容 C d S C 2 1 2 0 0105 2 1 2 1 2 1 4 222 J C Q C Q C Q WWW 這是由于外力克服兩板間靜電引力做功所致 8 13 用輸出電壓為 U 的穩(wěn)定電源為一電容為 C 的空氣平行板電容器充電 在電源保持連接的情況下 試 求將兩極板間距離增大至原距離 n 倍時外力所做的功 提示 電源要做功 解解 設(shè)原來兩板距離為 d 板上電荷為 Q 由 d S C 0 可知 距離由 d 增大到 nd 時 n C nd S C 0 n Q n CU UCQ 即電荷減少 由于連著電源 除外力做功外 電源也要做功 電容器兩板距離拉大后 電容器能量增量為 0 1 1 2 1 2 1 2 1 222 W n n n n CUUCCUWWW 由于板上電荷減少 即向電源充電 所以電源做負(fù)功 0 1 21 W n n QU n n UQ n Q UQA電 由功能原理 WAA 電外 2 2 11 CU n n W n n AWA 電外 8 14 一平行板電容器極

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論