![八數(shù)下十九章平行四邊形教案及教學(xué)設(shè)計(jì).doc_第1頁](http://file.renrendoc.com/FileRoot1/2020-1/17/c2234cf7-dbec-4c20-9205-2f64d71b89aa/c2234cf7-dbec-4c20-9205-2f64d71b89aa1.gif)
![八數(shù)下十九章平行四邊形教案及教學(xué)設(shè)計(jì).doc_第2頁](http://file.renrendoc.com/FileRoot1/2020-1/17/c2234cf7-dbec-4c20-9205-2f64d71b89aa/c2234cf7-dbec-4c20-9205-2f64d71b89aa2.gif)
![八數(shù)下十九章平行四邊形教案及教學(xué)設(shè)計(jì).doc_第3頁](http://file.renrendoc.com/FileRoot1/2020-1/17/c2234cf7-dbec-4c20-9205-2f64d71b89aa/c2234cf7-dbec-4c20-9205-2f64d71b89aa3.gif)
![八數(shù)下十九章平行四邊形教案及教學(xué)設(shè)計(jì).doc_第4頁](http://file.renrendoc.com/FileRoot1/2020-1/17/c2234cf7-dbec-4c20-9205-2f64d71b89aa/c2234cf7-dbec-4c20-9205-2f64d71b89aa4.gif)
![八數(shù)下十九章平行四邊形教案及教學(xué)設(shè)計(jì).doc_第5頁](http://file.renrendoc.com/FileRoot1/2020-1/17/c2234cf7-dbec-4c20-9205-2f64d71b89aa/c2234cf7-dbec-4c20-9205-2f64d71b89aa5.gif)
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
初中數(shù)學(xué)789 人教版八年級(jí)數(shù)學(xué)下冊(cè)教案及教學(xué)設(shè)計(jì)第十九章 平行四邊形19.1.1 平行四邊形及其性質(zhì)(一)一、 教學(xué)目的:1 理解并掌握平行四邊形的概念和平行四邊形對(duì)邊、對(duì)角相等的性質(zhì)2 會(huì)用平行四邊形的性質(zhì)解決簡(jiǎn)單的平行四邊形的計(jì)算問題,并會(huì)進(jìn)行有關(guān)的論證3 培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力及邏輯推理能力二、 重點(diǎn)、難點(diǎn)1 重點(diǎn):平行四邊形的定義,平行四邊形對(duì)角、對(duì)邊相等的性質(zhì),以及性質(zhì)的應(yīng)用2 難點(diǎn):運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算三、例題的意圖分析 例1是教材P93的例1,它是平行四邊形性質(zhì)的實(shí)際應(yīng)用,題目比較簡(jiǎn)單,其目的就是讓學(xué)生能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的計(jì)算,講課時(shí),可以讓學(xué)生來解答例2是補(bǔ)充的一道幾何證明題,即讓學(xué)生學(xué)會(huì)運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證,又讓學(xué)生從較簡(jiǎn)單的幾何論證開始,提高學(xué)生的推理論證能力和邏輯思維能力,學(xué)會(huì)演繹幾何論證的方法此題應(yīng)讓學(xué)生自己進(jìn)行推理論證四、課堂引入1我們一起來觀察下圖中的竹籬笆格子和汽車的防護(hù)鏈,想一想它們是什么幾何圖形的形象?平行四邊形是我們常見的圖形,你還能舉出平行四邊形在生活中應(yīng)用的例子嗎?你能總結(jié)出平行四邊形的定義嗎?(1)定義:兩組對(duì)邊分別平行的四邊形是平行四邊形(2)表示:平行四邊形用符號(hào)“”來表示如圖,在四邊形ABCD中,ABDC,ADBC,那么四邊形ABCD是平行四邊形平行四邊形ABCD記作“ ABCD”,讀作“平行四邊形ABCD”AB/DC ,AD/BC , 四邊形ABCD是平行四邊形(判定); 四邊形ABCD是平行四邊形AB/DC, AD/BC(性質(zhì))注意:平行四邊形中對(duì)邊是指無公共點(diǎn)的邊,對(duì)角是指不相鄰的角,鄰邊是指有公共端點(diǎn)的邊,鄰角是指有一條公共邊的兩個(gè)角而三角形對(duì)邊是指一個(gè)角的對(duì)邊,對(duì)角是指一條邊的對(duì)角(教學(xué)時(shí)要結(jié)合圖形,讓學(xué)生認(rèn)識(shí)清楚)2【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外,還有什么特殊的性質(zhì)呢?我們一起來探究一下讓學(xué)生根據(jù)平行四邊形的定義畫一個(gè)一個(gè)平行四邊形,觀察這個(gè)四邊形,它除具有四邊形的性質(zhì)和兩組對(duì)邊分別平行外以,它的邊和角之間有什么關(guān)系?度量一下,是不是和你猜想的一致? (1)由定義知道,平行四邊形的對(duì)邊平行根據(jù)平行線的性質(zhì)可知,在平行四邊形中,相鄰的角互為補(bǔ)角(相鄰的角指四邊形中有一條公共邊的兩個(gè)角注意和第一章的鄰角相區(qū)別教學(xué)時(shí)結(jié)合圖形使學(xué)生分辨清楚)(2)猜想 平行四邊形的對(duì)邊相等、對(duì)角相等下面證明這個(gè)結(jié)論的正確性已知:如圖ABCD,求證:ABCD,CBAD,BD,BADBCD分析:作ABCD的對(duì)角線AC,它將平行四邊形分成ABC和CDA,證明這兩個(gè)三角形全等即可得到結(jié)論(作對(duì)角線是解決四邊形問題常用的輔助線,通過作對(duì)角線,可以把未知問題轉(zhuǎn)化為已知的關(guān)于三角形的問題) 證明:連接AC, ABCD,ADBC, 13,24又 ACCA, ABCCDA (ASA) ABCD,CBAD,BD又 1423, BADBCD由此得到:平行四邊形性質(zhì)1平行四邊形的對(duì)邊相等平行四邊形性質(zhì)2 平行四邊形的對(duì)角相等五、例習(xí)題分析例1(教材P93例1) 例2(補(bǔ)充)如圖,在平行四邊形ABCD中,AE=CF,求證:AF=CE分析:要證AF=CE,需證ADFCBE,由于四邊形ABCD是平行四邊形,因此有D=B ,AD=BC,AB=CD,又AE=CF,根據(jù)等式性質(zhì),可得BE=DF由“邊角邊”可得出所需要的結(jié)論證明略六、隨堂練習(xí)1填空:(1)在ABCD中,A=,則B= 度,C= 度,D= 度(2)如果ABCD中,AB=240,則A= 度,B= 度,C= 度,D= 度 (3)如果ABCD的周長為28cm,且AB:BC=25,那么AB= cm,BC= cm,CD= cm,CD= cm2如圖4.39,在ABCD中,AC為對(duì)角線,BEAC,DFAC,E、F為垂足,求證:BEDF七、課后練習(xí)1(選擇)在下列圖形的性質(zhì)中,平行四邊形不一定具有的是( )(A)對(duì)角相等 (B)對(duì)角互補(bǔ) (C)鄰角互補(bǔ) (D)內(nèi)角和是2在ABCD中,如果EFAD,GHCD,EF與GH相交與點(diǎn)O,那么圖中的平行四邊形一共有( )(A)4個(gè) (B)5個(gè) (C)8個(gè) (D)9個(gè)3如圖,ADBC,AECD,BD平分ABC,求證AB=CE19.1.1 平行四邊形的性質(zhì)(二)一、 教學(xué)目的:1 理解平行四邊形中心對(duì)稱的特征,掌握平行四邊形對(duì)角線互相平分的性質(zhì)2 能綜合運(yùn)用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計(jì)算問題,和簡(jiǎn)單的證明題3 培養(yǎng)學(xué)生的推理論證能力和邏輯思維能力二、 重點(diǎn)、難點(diǎn)1 重點(diǎn):平行四邊形對(duì)角線互相平分的性質(zhì),以及性質(zhì)的應(yīng)用2 難點(diǎn):綜合運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算三、例題的意圖分析 本節(jié)課安排了兩個(gè)例題,例1是一道補(bǔ)充題,它是性質(zhì)3的直接運(yùn)用,然后對(duì)例1進(jìn)行了引申,可以根據(jù)學(xué)生的實(shí)際情況選講,并歸納結(jié)論:過平行四邊形對(duì)角線的交點(diǎn)作直線交對(duì)邊或?qū)叺难娱L線,所得的對(duì)應(yīng)線段相等例1與后面的三個(gè)圖形是一組重要的基本圖形,熟悉它的性質(zhì)對(duì)解答復(fù)雜問題是很有幫助的例2是教材P94的例2,這是復(fù)習(xí)鞏固小學(xué)學(xué)過的平行四邊形面積計(jì)算這個(gè)例題比小學(xué)計(jì)算平行四邊形面積的題加深了一步,需要應(yīng)用勾股定理,先求得平行四邊形一邊上的高,然后才能應(yīng)用公式計(jì)算在以后的解題中,還會(huì)遇到需要應(yīng)用勾股定理來求高或底的問題,在教學(xué)中要注意使學(xué)生掌握其方法四、課堂引入1復(fù)習(xí)提問:(1)什么樣的四邊形是平行四邊形?四邊形與平行四邊形的關(guān)系是:(2)平行四邊形的性質(zhì):具有一般四邊形的性質(zhì)(內(nèi)角和是)角:平行四邊形的對(duì)角相等,鄰角互補(bǔ) 邊:平行四邊形的對(duì)邊相等 2【探究】:請(qǐng)學(xué)生在紙上畫兩個(gè)全等的ABCD和EFGH,并連接對(duì)角線AC、BD和EG、HF,設(shè)它們分別交于點(diǎn)O把這兩個(gè)平行四邊形落在一起,在點(diǎn)O處釘一個(gè)圖釘,將ABCD繞點(diǎn)O旋轉(zhuǎn),觀察它還和EFGH重合嗎?你能從子中看出前面所得到的平行四邊形的邊、角關(guān)系嗎?進(jìn)一步,你還能發(fā)現(xiàn)平行四邊形的什么性質(zhì)嗎?結(jié)論:(1)平行四邊形是中心對(duì)稱圖形,兩條對(duì)角線的交點(diǎn)是對(duì)稱中心; (2)平行四邊形的對(duì)角線互相平分五、例習(xí)題分析例1(補(bǔ)充) 已知:如圖421, ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EF過點(diǎn)O與AB、CD分別相交于點(diǎn)E、F求證:OEOF,AE=CF,BE=DF證明:在 ABCD中,ABCD,1234又 OAOC(平行四邊形的對(duì)角線互相平分), AOECOF(ASA)OEOF,AE=CF(全等三角形對(duì)應(yīng)邊相等) ABCD, AB=CD(平行四邊形對(duì)邊相等) ABAE=CDCF 即 BE=FD【引申】若例1中的條件都不變,將EF轉(zhuǎn)動(dòng)到圖b的位置,那么例1的結(jié)論是否成立?若將EF向兩方延長與平行四邊形的兩對(duì)邊的延長線分別相交(圖c和圖d),例1的結(jié)論是否成立,說明你的理由解略例2(教材P94的例2)已知四邊形ABCD是平行四邊形,AB10cm,AD8cm,ACBC,求BC、CD、AC、OA的長以及ABCD的面積分析:由平行四邊形的對(duì)邊相等,可得BC、CD的長,在RtABC中,由勾股定理可得AC的長再由平行四邊形的對(duì)角線互相平分可求得OA的長,根據(jù)平行四邊形的面積計(jì)算公式:平行四邊形的面積=底高(高為此底上的高),可求得ABCD的面積(平行四邊形的面積小學(xué)學(xué)過,再次強(qiáng)調(diào)“底”是對(duì)應(yīng)著高說的,平行四邊形中,任一邊都可以作為“底”,“底”確定后,高也就隨之確定了)3.平行四邊形的面積計(jì)算解略(參看教材P94)六、隨堂練習(xí)1在平行四邊形中,周長等于48, 已知一邊長12,求各邊的長 已知AB=2BC,求各邊的長 已知對(duì)角線AC、BD交于點(diǎn)O,AOD與AOB的周長的差是10,求各邊的長2如圖,ABCD中,AEBD,EAD=60,AE=2cm,AC+BD=14cm,則OBC的周長是_ _cm3ABCD一內(nèi)角的平分線與邊相交并把這條邊分成,的兩條線段,則ABCD的周長是_ _七、課后練習(xí)1判斷對(duì)錯(cuò)(1)在ABCD中,AC交BD于O,則AO=OB=OC=OD ( )(2)平行四邊形兩條對(duì)角線的交點(diǎn)到一組對(duì)邊的距離相等 ( )(3)平行四邊形的兩組對(duì)邊分別平行且相等 ( )(4)平行四邊形是軸對(duì)稱圖形 ( )2在 ABCD中,AC6、BD4,則AB的范圍是_ _3在平行四邊形ABCD中,已知AB、BC、CD三條邊的長度分別為(x+3),(x-4)和16,則這個(gè)四邊形的周長是 4公園有一片綠地,它的形狀是平行四邊形,綠地上要修幾條筆直的小路,如圖,AB15cm,AD12cm,ACBC,求小路BC,CD,OC的長,并算出綠地的面積19.1.2(一) 平行四邊形的判定一、 教學(xué)目的: 1在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來判定平行四邊形的方法 2會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題 3培養(yǎng)用類比、逆向聯(lián)想及運(yùn)動(dòng)的思維方法來研究問題二、重點(diǎn)、難點(diǎn)更多免費(fèi)教案下載綠色圃中小學(xué)教育網(wǎng) 分站3 重點(diǎn):平行四邊形的判定方法及應(yīng)用4 難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用三、例題的意圖分析 本節(jié)課安排了3個(gè)例題,例1是教材P96的例3,它是平行四邊形的性質(zhì)與判定的綜合運(yùn)用,此題最好先讓學(xué)生說出證明的思路,然后老師總結(jié)并指出其最佳方法例2與例3都是補(bǔ)充的題目,其目的就是讓學(xué)生能靈活和綜合地運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題例3是一道拼圖題,教學(xué)時(shí),可以讓學(xué)生動(dòng)起來,邊拼圖邊說明道理,即可以提高學(xué)生的動(dòng)手能力和學(xué)生的思維能力,又可以提高學(xué)生的學(xué)習(xí)興趣如讓學(xué)生再用四個(gè)不等邊三角形拼一個(gè)如圖的大三角形,讓學(xué)生指出圖中所有的平行四邊形,并說明理由四、課堂引入1欣賞圖片、提出問題展示圖片,提出問題,在剛才演示的圖片中,有哪些是平行四邊形?你是怎樣判斷的?2【探究】:小明的父親手中有一些木條,他想通過適當(dāng)?shù)臏y(cè)量、割剪,釘制一個(gè)平行四邊形框架,你能幫他想出一些辦法來嗎?讓學(xué)生利用手中的學(xué)具硬紙板條通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?(3)你能說出你的做法及其道理嗎?(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?(5)你還能找出其他方法嗎?從探究中得到:平行四邊形判定方法1 兩組對(duì)邊分別相等的四邊形是平行四邊形。平行四邊形判定方法2 對(duì)角線互相平分的四邊形是平行四邊形。五、例習(xí)題分析例1(教材P96例3)已知:如圖ABCD的對(duì)角線AC、BD交于點(diǎn)O,E、F是AC上的兩點(diǎn),并且AE=CF求證:四邊形BFDE是平行四邊形分析:欲證四邊形BFDE是平行四邊形可以根據(jù)判定方法2來證明(證明過程參看教材)問;你還有其它的證明方法嗎?比較一下,哪種證明方法簡(jiǎn)單例2(補(bǔ)充) 已知:如圖,ABBA,BCCB, CAAC求證:(1) ABCB,CABA,BCAC;(2) ABC的頂點(diǎn)分別是BCA各邊的中點(diǎn)證明:(1) ABBA,CBBC, 四邊形ABCB是平行四邊形ABCB(平行四邊形的對(duì)角相等)同理CABA,BCAC(2) 由(1)證得四邊形ABCB是平行四邊形同理,四邊形ABAC是平行四邊形 ABBC, ABAC(平行四邊形的對(duì)邊相等) BCAC同理 BACA, ABCBABC的頂點(diǎn)A、B、C分別是BCA的邊BC、CA、AB的中點(diǎn) 例3(補(bǔ)充)小明用手中六個(gè)全等的正三角形做拼圖游戲時(shí),拼成一個(gè)六邊形你能在圖中找出所有的平行四邊形嗎?并說說你的理由 解:有6個(gè)平行四邊形,分別是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO 理由是:因?yàn)檎鼳BO正AOF,所以AB=BO,OF=FA根據(jù) “兩組對(duì)邊分別相等的四邊形是平行四邊形”,可知四邊形ABCD是平行四邊形其它五個(gè)同理 六、隨堂練習(xí)1如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,(1)若AD=8cm,AB=4cm,那么當(dāng)BC=_ _cm,CD=_ _cm時(shí),四邊形ABCD為平行四邊形;(2)若AC=10cm,BD=8cm,那么當(dāng)AO=_ _cm,DO=_ _cm時(shí),四邊形ABCD為平行四邊形2已知:如圖,ABCD中,點(diǎn)E、F分別在CD、AB上,DFBE,EF交BD于點(diǎn)O求證:EO=OF3靈活運(yùn)用課本P89例題,如圖:由火柴棒拼出的一列圖形,第n個(gè)圖形由(n+1)個(gè)等邊三角形拼成,通過觀察,分析發(fā)現(xiàn):第4個(gè)圖形中平行四邊形的個(gè)數(shù)為_ _ (6個(gè))第8個(gè)圖形中平行四邊形的個(gè)數(shù)為_ _ (20個(gè))七、課后練習(xí)1(選擇)下列條件中能判斷四邊形是平行四邊形的是( ) (A)對(duì)角線互相垂直 (B)對(duì)角線相等 (C)對(duì)角線互相垂直且相等 (D)對(duì)角線互相平分2已知:如圖,ABC,BD平分ABC,DEBC,EFBC, 求證:BE=CF19.1.2(二) 平行四邊形的判定一、 教學(xué)目的: 1掌握用一組對(duì)邊平行且相等來判定平行四邊形的方法 2會(huì)綜合運(yùn)用平行四邊形的四種判定方法和性質(zhì)來證明問題 3通過平行四邊形的性質(zhì)與判定的應(yīng)用,啟迪學(xué)生的思維,提高分析問題的能力二、 重點(diǎn)、難點(diǎn)1重點(diǎn):平行四邊形各種判定方法及其應(yīng)用,尤其是根據(jù)不同條件能正確地選擇判定方法2難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的綜合應(yīng)用 三、例題的意圖分析 本節(jié)課的兩個(gè)例題都是補(bǔ)充的題目,目的是讓學(xué)生能掌握平行四邊形的第三種判定方法和會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題學(xué)生程度好一些的學(xué)校,可以適當(dāng)?shù)刈约涸傺a(bǔ)充一些題目,使同學(xué)們會(huì)應(yīng)用這些方法進(jìn)行幾何的推理證明,通過學(xué)習(xí),培養(yǎng)學(xué)生分析問題、尋找最佳解題途徑的能力四、課堂引入1 平行四邊形的性質(zhì);2 平行四邊形的判定方法;3 【探究】 取兩根等長的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?結(jié)論:一組對(duì)邊平行且相等的四邊形是平行四邊形五、例習(xí)題分析例1(補(bǔ)充)已知:如圖,ABCD中,E、F分別是AD、BC的中點(diǎn),求證:BE=DF 分析:證明BE=DF,可以證明兩個(gè)三角形全等,也可以證明四邊形BEDF是平行四邊形,比較方法,可以看出第二種方法簡(jiǎn)單 證明: 四邊形ABCD是平行四邊形, ADCB,AD=CD E、F分別是AD、BC的中點(diǎn), DEBF,且DE=AD,BF=BC DE=BF 四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的四邊形平行四邊形) BE=DF 此題綜合運(yùn)用了平行四邊形的性質(zhì)和判定,先運(yùn)用平行四邊形的性質(zhì)得到判定另一個(gè)四邊形是平行四邊形的條件,再應(yīng)用平行四邊形的性質(zhì)得出結(jié)論;題目雖不復(fù)雜,但層次有三,且利用知識(shí)較多,因此應(yīng)使學(xué)生獲得清晰的證明思路例2(補(bǔ)充)已知:如圖,ABCD中,E、F分別是AC上兩點(diǎn),且BEAC于E,DFAC于F求證:四邊形BEDF是平行四邊形分析:因?yàn)锽EAC于E,DFAC于F,所以BEDF需再證明BE=DF,這需要證明ABE與CDF全等,由角角邊即可 證明: 四邊形ABCD是平行四邊形, AB=CD,且ABCD BAE=DCF BEAC于E,DFAC于F, BEDF,且BEA=DFC=90 ABECDF (AAS) BE=DF 四邊形BEDF是平行四邊形(一組對(duì)邊平行且相等的四邊形平行四邊形)六、課堂練習(xí)1(選擇)在下列給出的條件中,能判定四邊形ABCD為平行四邊形的是( )(A)ABCD,AD=BC (B)A=B,C=D (C)AB=CD,AD=BC (D)AB=AD,CB=CD2已知:如圖,ACED,點(diǎn)B在AC上,且AB=ED=BC, 找出圖中的平行四邊形,并說明理由3已知:如圖,在ABCD中,AE、CF分別是DAB、BCD的平分線求證:四邊形AFCE是平行四邊形七、課后練習(xí)1判斷題:(1)相鄰的兩個(gè)角都互補(bǔ)的四邊形是平行四邊形; ( )(2)兩組對(duì)角分別相等的四邊形是平行四邊形; ( )(3)一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形; ( )(4)一組對(duì)邊平行且相等的四邊形是平行四邊形; ( )(5)對(duì)角線相等的四邊形是平行四邊形; ( )(6)對(duì)角線互相平分的四邊形是平行四邊形 ( )2延長ABC的中線AD至E,使DE=AD求證:四邊形ABEC是平行四邊形3在四邊形ABCD中,(1)ABCD;(2)ADBC;(3)ADBC;(4)AOOC;(5)DOBO;(6)ABCD選擇兩個(gè)條件,能判定四邊形ABCD是平行四邊形的共有_對(duì)(共有9對(duì))19.1.2(三) 平行四邊形的判定三角形的中位線一、 教學(xué)目的:1 理解三角形中位線的概念,掌握它的性質(zhì)2 能較熟練地應(yīng)用三角形中位線性質(zhì)進(jìn)行有關(guān)的證明和計(jì)算3經(jīng)歷探索、猜想、證明的過程,進(jìn)一步發(fā)展推理論證的能力4能運(yùn)用綜合法證明有關(guān)三角形中位線性質(zhì)的結(jié)論理解在證明過程中所運(yùn)用的歸納、類比、轉(zhuǎn)化等思想方法二、 重點(diǎn)、難點(diǎn)1重點(diǎn):掌握和運(yùn)用三角形中位線的性質(zhì)2難點(diǎn):三角形中位線性質(zhì)的證明(輔助線的添加方法) 三、例題的意圖分析 例1是教材P98的例4,這是三角形中位線性質(zhì)的證明題,教材采用的是先證明后引出概念與性質(zhì)的方法,它一是要練習(xí)鞏固平行四邊形的性質(zhì)與判定,二是為了降低難度,因此教師們?cè)诮虒W(xué)中要把握好度建議講完例1,引出三角形中位線的概念和性質(zhì)后,馬上做一組練習(xí),以鞏固三角形中位線的性質(zhì),然后再講例2例2是一道補(bǔ)充題,選自老教材的一個(gè)例題,它是三角形中位線性質(zhì)與平行四邊形的判定的混合應(yīng)用題,題型挺好,添加輔助線的方法也很巧,結(jié)論以后也會(huì)經(jīng)常用到,可根據(jù)學(xué)生情況適當(dāng)?shù)倪x講例2教學(xué)中,要把輔助線的添加方法講清楚,可以借助與多媒體或教具四、課堂引入1 平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?2 你能說說平行四邊形性質(zhì)與判定的用途嗎?(答:平行四邊形知識(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問題例如求角的度數(shù),線段的長度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題)3創(chuàng)設(shè)情境實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?(答案如圖)圖中有幾個(gè)平行四邊形?你是如何判斷的?五、例習(xí)題分析 例1(教材P98例4) 如圖,點(diǎn)D、E、分別為ABC邊AB、AC的中點(diǎn),求證:DEBC且DE=BC 分析:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過的知識(shí),可以把要證明的內(nèi)容轉(zhuǎn)化到一個(gè)平行四邊形中,利用平行四邊形的對(duì)邊平行且相等的性質(zhì)來證明結(jié)論成立,從而使問題得到解決,這就需要添加適當(dāng)?shù)妮o助線來構(gòu)造平行四邊形 方法1:如圖(1),延長DE到F,使EF=DE,連接CF,由ADECFE,可得ADFC,且AD=FC,因此有BDFC,BD=FC,所以四邊形BCFD是平行四邊形所以DFBC,DF=BC,因?yàn)镈E=DF,所以DEBC且DE=BC(也可以過點(diǎn)C作CFAB交DE的延長線于F點(diǎn),證明方法與上面大體相同) 方法2:如圖(2),延長DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形所以ADFC,且AD=FC因?yàn)锳D=BD,所以BDFC,且BD=FC所以四邊形ADCF是平行四邊形所以DFBC,且DF=BC,因?yàn)镈E=DF,所以DEBC且DE=BC定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線【思考】:(1)想一想:一個(gè)三角形的中位線共有幾條?三角形的中位線與中線有什么區(qū)別? (2)三角形的中位線與第三邊有怎樣的關(guān)系? (答:(1)一個(gè)三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點(diǎn)不同中位線是中點(diǎn)與中點(diǎn)的連線;中線是頂點(diǎn)與對(duì)邊中點(diǎn)的連線 (2)三角形的中位線與第三邊的關(guān)系:三角形的中位線平行與第三邊,且等于第三邊的一半)三角形中位線的性質(zhì):三角形的中位線平行與第三邊,且等于第三邊的一半拓展利用這一定理,你能證明出在設(shè)情境中分割出來的四個(gè)小三角形全等嗎?(讓學(xué)生口述理由)例2(補(bǔ)充)已知:如圖(1),在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn)求證:四邊形EFGH是平行四邊形分析:因?yàn)橐阎c(diǎn)E、F、G、H分別是線段的中點(diǎn),可以設(shè)法應(yīng)用三角形中位線性質(zhì)找到四邊形EFGH的邊之間的關(guān)系由于四邊形的對(duì)角線可以把四邊形分成兩個(gè)三角形,所以添加輔助線,連接AC或BD,構(gòu)造“三角形中位線”的基本圖形后,此題便可得證證明:連結(jié)AC(圖(2),DAG中, AH=HD,CG=GD, HGAC,HG=AC(三角形中位線性質(zhì))同理EFAC,EF=AC HGEF,且HG=EF 四邊形EFGH是平行四邊形此題可得結(jié)論:順次連結(jié)四邊形四條邊的中點(diǎn),所得的四邊形是平行四邊形六、課堂練習(xí)1(填空)如圖,A、B兩點(diǎn)被池塘隔開,在AB外選一點(diǎn)C,連結(jié)AC和BC,并分別找出AC和BC的中點(diǎn)M、N,如果測(cè)得MN=20 m,那么A、B兩點(diǎn)的距離是 m,理由是 2已知:三角形的各邊分別為8cm 、10cm和12cm ,求連結(jié)各邊中點(diǎn)所成三角形的周長3如圖,ABC中,D、E、F分別是AB、AC、BC的中點(diǎn),(1)若EF=5cm,則AB= cm;若BC=9cm,則DE= cm;(2)中線AF與DE中位線有什么特殊的關(guān)系?證明你的猜想七、課后練習(xí)1(填空)一個(gè)三角形的周長是135cm,過三角形各頂點(diǎn)作對(duì)邊的平行線,則這三條平行線所組成的三角形的周長是 cm2(填空)已知:ABC中,點(diǎn)D、E、F分別是ABC三邊的中點(diǎn),如果DEF的周長是12cm,那么ABC的周長是 cm3已知:如圖,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn)求證:四邊形EFGH是平行四邊形19.2.1 矩形(一)一、教學(xué)目的: 1掌握矩形的概念和性質(zhì),理解矩形與平行四邊形的區(qū)別與聯(lián)系 2會(huì)初步運(yùn)用矩形的概念和性質(zhì)來解決有關(guān)問題 3滲透運(yùn)動(dòng)聯(lián)系、從量變到質(zhì)變的觀點(diǎn)二、重點(diǎn)、難點(diǎn)1重點(diǎn):矩形的性質(zhì)2難點(diǎn):矩形的性質(zhì)的靈活應(yīng)用三、例題的意圖分析例1是教材P104的例1,它是矩形性質(zhì)的直接運(yùn)用,它除了用以鞏固所學(xué)的矩形性質(zhì)外,對(duì)計(jì)算題的格式也起了一個(gè)示范作用例2與例3都是補(bǔ)充的題目,其中通過例2的講解是想讓學(xué)生了解:(1)因?yàn)榫匦嗡膫€(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法;(2)“直角三角形斜邊上的高”是一個(gè)基本圖形,利用面積公式,可得到兩直角邊、斜邊及斜邊上的高的一個(gè)基本關(guān)系式并能通過例2、例3的講解使學(xué)生掌握解決有關(guān)矩形方面的一些計(jì)算題目與證明題的方法四、課堂引入1展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?2思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫演示拉動(dòng)過程如圖)3再次演示平行四邊形的移動(dòng)過程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過的長方形)引出本課題及矩形定義矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長方形)矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀 隨著的變化,兩條對(duì)角線的長度分別是怎樣變化的? 當(dāng)是直角時(shí),平行四邊形變成矩形,此時(shí)它的其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長度有什么關(guān)系?操作,思考、交流、歸納后得到矩形的性質(zhì)矩形性質(zhì)1 矩形的四個(gè)角都是直角矩形性質(zhì)2 矩形的對(duì)角線相等 如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線等于斜邊的一半五、例習(xí)題分析 例1 (教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,AOB=60,AB=4cm,求矩形對(duì)角線的長分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅?,所以它具有?duì)角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得OAB是等邊三角形,因此對(duì)角線的長度可求解:四邊形ABCD是矩形,AC與BD相等且互相平分OA=OB又 AOB=60, OAB是等邊三角形 矩形的對(duì)角線長AC=BD = 2OA=24=8(cm) 例2(補(bǔ)充)已知:如圖 ,矩形 ABCD,AB長8 cm ,對(duì)角線比AD邊長4 cm求AD的長及點(diǎn)A到BD的距離AE的長分析:(1)因?yàn)榫匦嗡膫€(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法略解:設(shè)AD=xcm,則對(duì)角線長(x+4)cm,在RtABD中,由勾股定理:,解得x=6 則 AD=6cm(2)“直角三角形斜邊上的高”是一個(gè)基本圖形,利用面積公式,可得到兩直角邊、斜邊及斜邊上的高的一個(gè)基本關(guān)系式: AEDB ADAB,解得 AE 4.8cm 例3(補(bǔ)充) 已知:如圖,矩形ABCD中,E是BC上一點(diǎn),DFAE于F,若AE=BC 求證:CEEF 分析:CE、EF分別是BC,AE等線段上的一部分,若AFBE,則問題解決,而證明AFBE,只要證明ABEDFA即可,在矩形中容易構(gòu)造全等的直角三角形 證明: 四邊形ABCD是矩形, B=90,且ADBC 1=2 DFAE, AFD=90 B=AFD又 AD=AE, ABEDFA(AAS) AF=BE EF=EC 此題還可以連接DE,證明DEFDEC,得到EFEC六、隨堂練習(xí)1(填空)(1)矩形的定義中有兩個(gè)條件:一是 ,二是 (2)已知矩形的一條對(duì)角線與一邊的夾角為30,則矩形兩條對(duì)角線相交所得的四個(gè)角的度數(shù)分別為 、 、 、 (3)已知矩形的一條對(duì)角線長為10cm,兩條對(duì)角線的一個(gè)交角為120,則矩形的邊長分別為 cm, cm, cm, cm2(選擇)(1)下列說法錯(cuò)誤的是( ) (A)矩形的對(duì)角線互相平分 (B)矩形的對(duì)角線相等(C)有一個(gè)角是直角的四邊形是矩形 (D)有一個(gè)角是直角的平行四邊形叫做矩形(2)矩形的對(duì)角線把矩形分成的三角形中全等三角形一共有( )(A)2對(duì) (B)4對(duì) (C)6對(duì) (D)8對(duì)3已知:如圖,O是矩形ABCD對(duì)角線的交點(diǎn),AE平分BAD,AOD=120,求AEO的度數(shù)七、課后練習(xí)1(選擇)矩形的兩條對(duì)角線的夾角為60,對(duì)角線長為15cm,較短邊的長為( )(A)12cm (B)10cm (C)7.5cm (D)5cm2在直角三角形ABC中,C=90,AB=2AC,求A、B的度數(shù)3已知:矩形ABCD中,BC=2AB,E是BC的中點(diǎn),求證:EAED4如圖,矩形ABCD中,AB=2BC,且AB=AE,求證:CBE的度數(shù)19.2.1 矩形(二)一、教學(xué)目的:1理解并掌握矩形的判定方法2使學(xué)生能應(yīng)用矩形定義、判定等知識(shí),解決簡(jiǎn)單的證明題和計(jì)算題,進(jìn)一步培養(yǎng)學(xué)生的分析能力二、重點(diǎn)、難點(diǎn)1重點(diǎn):矩形的判定2難點(diǎn):矩形的判定及性質(zhì)的綜合應(yīng)用三、例題的意圖分析 本節(jié)課的三個(gè)例題都是補(bǔ)充題,例1在的一組判斷題是為了讓學(xué)生加深理解判定矩形的條件,老師們?cè)诮虒W(xué)中還可以適當(dāng)?shù)卦僭黾右恍┡袛嗟念}目;例2是利用矩形知識(shí)進(jìn)行計(jì)算;例3是一道矩形的判定題,三個(gè)題目從不同的角度出發(fā),來綜合應(yīng)用矩形定義及判定等知識(shí)的四、課堂引入1什么叫做平行四邊形?什么叫做矩形?2矩形有哪些性質(zhì)?3矩形與平行四邊形有什么共同之處?有什么不同之處?4事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來兩根長度相等的短木條和兩根長度相等的長木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰的方法可行?通過討論得到矩形的判定方法矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形矩形判定方法2:有三個(gè)角是直角的四邊形是矩形(指出:判定一個(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角)五、例習(xí)題分析 例1(補(bǔ)充)下列各句判定矩形的說法是否正確?為什么? (1)有一個(gè)角是直角的四邊形是矩形; () (2)有四個(gè)角是直角的四邊形是矩形; () (3)四個(gè)角都相等的四邊形是矩形; ()(4)對(duì)角線相等的四邊形是矩形; ()(5)對(duì)角線相等且互相垂直的四邊形是矩形; ()(6)對(duì)角線互相平分且相等的四邊形是矩形; ()(7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形; ()(8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;() (9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形 () 指出: (l)所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形; (2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論例2 (補(bǔ)充)已知 ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AOB是等邊三角形,AB=4 cm,求這個(gè)平行四邊形的面積分析:首先根據(jù)AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長,從而得到面積值解: 四邊形ABCD是平行四邊形, AO=AC,BO=BD AO=BO, AC=BD ABCD是矩形(對(duì)角線相等的平行四邊形是矩形)在RtABC中, AB=4cm,AC=2AO=8cm, BC=(cm) 例3 (補(bǔ)充)已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H求證:四邊形EFGH是矩形分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來證明證明: 四邊形ABCD是平行四邊形, ADBCDABABC=180又 AE平分DAB,BG平分ABC ,EABABG=180=90AFB=90同理可證 AED=BGC=CHD=90 四邊形EFGH是平行四邊形(有三個(gè)角是直角的四邊形是矩形)六、隨堂練習(xí)1(選擇)下列說法正確的是( )(A)有一組對(duì)角是直角的四邊形一定是矩形(B)有一組鄰角是直角的四邊形一定是矩形(C)對(duì)角線互相平分的四邊形是矩形 (D)對(duì)角互補(bǔ)的平行四邊形是矩形2已知:如圖,在ABC中,C90,CD為中線,延長CD到點(diǎn)E,使得 DECD連結(jié)AE,BE,則四邊形ACBE為矩形七、課后練習(xí)1工人師傅做鋁合金窗框分下面三個(gè)步驟進(jìn)行: 先截出兩對(duì)符合規(guī)格的鋁合金窗料(如圖),使ABCD,EFGH; 擺放成如圖的四邊形,則這時(shí)窗框的形狀是 形,根據(jù)的數(shù)學(xué)道理是: ; 將直角尺靠緊窗框的一個(gè)角(如圖),調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(shí)(如圖),說明窗框合格,這時(shí)窗框是 形,根據(jù)的數(shù)學(xué)道理是: ;2在RtABC中,C=90,AB=2AC,求A、B的度數(shù)19.2.2 菱形(一)一、教學(xué)目的:1掌握菱形概念,知道菱形與平行四邊形的關(guān)系2理解并掌握菱形的定義及性質(zhì)1、2;會(huì)用這些性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算,會(huì)計(jì)算菱形的面積3通過運(yùn)用菱形知識(shí)解決具體問題,提高分析能力和觀察能力4根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想二、重點(diǎn)、難點(diǎn)1教學(xué)重點(diǎn):菱形的性質(zhì)1、22教學(xué)難點(diǎn):菱形的性質(zhì)及菱形知識(shí)的綜合應(yīng)用 三、例題的意圖分析 本節(jié)課安排了兩個(gè)例題,例1是一道補(bǔ)充題,是為了鞏固菱形的性質(zhì);例2是教材P108中的例2,這是一道用菱形知識(shí)與直角三角形知識(shí)來求菱形面積的實(shí)際應(yīng)用問題此題目,除用以鞏固菱形性質(zhì)外,還可以引導(dǎo)學(xué)生用不同的方法來計(jì)算菱形的面積,以促進(jìn)學(xué)生熟練、靈活地運(yùn)用知識(shí)四、課堂引入1(復(fù)習(xí))什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?2(引入)我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形矩形,其實(shí)還有另外的特殊平行四邊形,請(qǐng)看演示:(可將事先按如圖做成的一組對(duì)邊可以活動(dòng)的教具進(jìn)行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念菱形定義:有一組鄰邊相等的平行四邊形叫做菱形【強(qiáng)調(diào)】菱形(1)是平行四邊形;(2)一組鄰邊相等讓學(xué)生舉一些日常生活中所見到過的菱形的例子五、例習(xí)題分析例1(補(bǔ)充) 已知:如圖,四邊形ABCD是菱形,F(xiàn)是AB上一點(diǎn),DF交AC于E 求證:AFD=CBE 證明:四邊形ABCD是菱形, CB=CD, CA平分BCD BCE=DCE又 CE=CE, BCECOB(SAS) CBE=CDE 在菱形ABCD中,ABCD, AFD=FDCAFD=CBE 例2 (教材P108例2)略六、隨堂練習(xí)1若菱形的邊長等于一條對(duì)角線的長,則它的一組鄰角的度數(shù)分別為 2已知菱形的兩條對(duì)角線分別是6cm和8cm ,求菱形的周長和面積3已知菱形ABCD的周長為20cm,且相鄰兩內(nèi)角之比是12,求菱形的對(duì)角線的長和面積4已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點(diǎn),且BE=DF求證:AEF=AFE 七、課后練習(xí)1菱形ABCD中,DA=31,菱形的周長為 8cm,求菱形的高2如圖,四邊形ABCD是邊長為13cm的菱形,其中對(duì)角線BD長10cm,求(1)對(duì)角線AC的長度;(2)菱形ABCD的面積19.2.2 菱形(二)一、教學(xué)目的:1理解并掌握菱形的定義及兩個(gè)判定方法;會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算;2在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力二、重點(diǎn)、難點(diǎn)1教學(xué)重點(diǎn):菱形的兩個(gè)判定方法2教學(xué)難點(diǎn):判定方法的證明方法及運(yùn)用 三、例題的意圖分析本節(jié)課安排了兩個(gè)例題,其中例1是教材P109的例3,例2是一道補(bǔ)充的題目,這兩個(gè)題目都是菱形判定方法的直接的運(yùn)用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算這些題目的推理都比較簡(jiǎn)單,學(xué)生掌握起來不會(huì)有什么困難,可以讓學(xué)生自己去完成程度好一些的班級(jí),可以選講例3四、課堂引入1復(fù)習(xí)(1)菱形的定義:一組鄰邊相等的平行四邊形; (2)菱形的性質(zhì)1 菱形的四條邊都相等;性質(zhì)2 菱形的對(duì)角線互相平分,并且每條對(duì)角線平分一組對(duì)角;(3)運(yùn)用菱形的定義進(jìn)行菱形的判定,應(yīng)具備幾個(gè)條件?(判定:2個(gè)條件)2【問題】要判定一個(gè)四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?3【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點(diǎn)處固定一個(gè)小釘,做成一個(gè)可轉(zhuǎn)動(dòng)的十字,四周圍上一根橡皮筋,做成一個(gè)四邊形轉(zhuǎn)動(dòng)木條,這個(gè)四邊形什么時(shí)候變成菱形?通過演示,容易得到:菱形判定方法1 對(duì)角線互相垂直的平行四邊形是菱形注意此方法包括兩個(gè)條件:(1)是一個(gè)平行四邊形;(2)兩條對(duì)角線互相垂直 通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:菱形判定方法2 四邊都相等的四邊形是菱形五、例習(xí)題分析例1 (教材P109的例3)略例2(補(bǔ)充)已知:如圖ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形證明: 四邊形ABCD是平行四邊形, AEFC 1=2又 AOE=COF,AO=CO, AOECOF EO=FO 四邊形AFCE是平行四邊形又 EFAC, AFCE是菱形(對(duì)角線互相垂直的平行四邊形是菱形) 例3(選講) 已知:如圖,ABC中, ACB=90,BE平分ABC,CDAB與D,EHAB于H,CD交BE于F求證:四邊形CEHF為菱形 略證:易證CFEH,CE=EH,在RtBCE中,CBE+CEB=90,在RtBDF中,DBF+DFB=90,因?yàn)镃BE=DBF,CFE=DFB,所以CEB=CFE,所以CE=CF所以,CF=CE=EH,CFEH,所以四邊形CEHF為菱形六、隨堂練習(xí)1填空:(1)對(duì)角線互相平分的四邊形是 ;(2)對(duì)角線互相垂直平分的四邊形是_;(3)對(duì)角線相等且互相平分的四邊形是_;(4)兩組對(duì)邊分別平行,且對(duì)角線 的四邊形是菱形2畫一個(gè)菱形,使它的兩條對(duì)角線長分別為6cm、8cm3如圖,O是矩形ABCD的對(duì)角線的交點(diǎn),DEAC,CEBD,DE和CE相交于E,求證:四邊形OCED是菱形。七、課后練習(xí)1下列條件中,能判定四邊形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同段意見的回復(fù)
- 2025【合同范本】貿(mào)易合同大全
- 2025專利實(shí)施資金項(xiàng)目申報(bào)合同書
- 2025投資基金資產(chǎn)管理合同
- 養(yǎng)殖用地出讓合同范本
- 企業(yè)征地合作合同范例
- 全鋁加盟合同范本
- 不起訴合同范例
- 中介租房合同范例漏洞
- pvc廣告字合同范本
- 2025年湖南韶山干部學(xué)院公開招聘15人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 廣東省廣州市番禺區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 智研咨詢發(fā)布:2024年中國MVR蒸汽機(jī)械行業(yè)市場(chǎng)全景調(diào)查及投資前景預(yù)測(cè)報(bào)告
- IF鋼物理冶金原理與關(guān)鍵工藝技術(shù)1
- JGJ46-2024 建筑與市政工程施工現(xiàn)場(chǎng)臨時(shí)用電安全技術(shù)標(biāo)準(zhǔn)
- 煙花爆竹重大危險(xiǎn)源辨識(shí)AQ 4131-2023知識(shí)培訓(xùn)
- 銷售提成對(duì)賭協(xié)議書范本 3篇
- 企業(yè)動(dòng)火作業(yè)安全管理制度范文
- EPC項(xiàng)目階段劃分及工作結(jié)構(gòu)分解方案
- 《跨學(xué)科實(shí)踐活動(dòng)4 基于特定需求設(shè)計(jì)和制作簡(jiǎn)易供氧器》教學(xué)設(shè)計(jì)
- 2024-2030年汽車啟停電池市場(chǎng)運(yùn)行態(tài)勢(shì)分析及競(jìng)爭(zhēng)格局展望報(bào)告
評(píng)論
0/150
提交評(píng)論