高中數(shù)學(xué)教學(xué)案例的反思.doc_第1頁
高中數(shù)學(xué)教學(xué)案例的反思.doc_第2頁
高中數(shù)學(xué)教學(xué)案例的反思.doc_第3頁
高中數(shù)學(xué)教學(xué)案例的反思.doc_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

此文檔收集于網(wǎng)絡(luò),僅供學(xué)習(xí)與交流,如有侵權(quán)請聯(lián)系網(wǎng)站刪除高中數(shù)學(xué)教學(xué)案例的反思 -圓錐曲線定義的運用中山市第二中學(xué) 王燕一、教學(xué)內(nèi)容分析圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。二、學(xué)生學(xué)習(xí)情況分析我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。三、設(shè)計思想由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.四、教學(xué)目標(biāo)1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。2.通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。3借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.五、教學(xué)重點與難點:教學(xué)重點1.對圓錐曲線定義的理解2.利用圓錐曲線的定義求“最值”3.“定義法”求軌跡方程教學(xué)難點:巧用圓錐曲線定義解題六、教學(xué)過程設(shè)計【設(shè)計思路】(一)開門見山,提出問題一上課,我就直截了當(dāng)?shù)亟o出例題1:(1) 已知A(2,0), B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是( )。 (A)橢圓 (B)雙曲線 (C)線段 (D)不存在(2)已知動點 M(x,y)滿足,則點M的軌跡是( )。(A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線【設(shè)計意圖】定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準(zhǔn)備了兩道練習(xí)題?!緦W(xué)情預(yù)設(shè)】估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子入手,考慮通過適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個距離公式。在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是 ,實軸長為 ,焦距為 。以深化對概念的理解。(二)理解定義、解決問題例2 (1)已知動圓A過定圓B:的圓心,且與定圓C: 相內(nèi)切,求ABC面積的最大值。 (2)在(1)的條件下,給定點P(-2,2), 求的最小值?!驹O(shè)計意圖】運用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(?。┲档哪J?,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析?!緦W(xué)情預(yù)設(shè)】根據(jù)以往的經(jīng)驗,多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點A的軌跡,有了練習(xí)題1的鋪墊,這個問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。 (三)自主探究、深化認(rèn)識如果時間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗的機會練習(xí):設(shè)點Q是圓C:上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。 引申:若將點A移到圓C外,點M的軌跡會是什么?【設(shè)計意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺,當(dāng)然,如果課堂上時間允許的話,可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進(jìn)行驗證。【知識鏈接】(一)圓錐曲線的定義1 圓錐曲線的第一定義2 圓錐曲線的統(tǒng)一定義(二)圓錐曲線定義的應(yīng)用舉例1雙曲線的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準(zhǔn)線的距離。2P為等軸雙曲線上一點, F1、F2為兩焦點,O為雙曲線的中心,求的取值范圍。3在拋物線上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標(biāo)。4(1)已知點F是橢圓的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。(2)已知A()為一定點,F(xiàn)為雙曲線的右焦點,M在雙曲線右支上移動,當(dāng)最小時,求M點的坐標(biāo)。(3)已知點P(2,3)及焦點為F的拋物線,在拋物線上求一點M,使|PM|+|FM|最小。5已知A(4,0),B(2,2)是橢圓內(nèi)的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。七、教學(xué)反思1本課將借助于“POWERPOINT課件”,將使全體學(xué)生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學(xué),節(jié)省了板演的時間,從而給學(xué)生留出更多的時間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結(jié)合的教學(xué)優(yōu)勢。2利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會一個問題的求解到掌握一類問題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實上,學(xué)生們的思維運動量并不會小??傊?如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個重要研究課題.而要能真正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論