奧數(shù).行程.相遇和追及公式.doc_第1頁
奧數(shù).行程.相遇和追及公式.doc_第2頁
奧數(shù).行程.相遇和追及公式.doc_第3頁
奧數(shù).行程.相遇和追及公式.doc_第4頁
奧數(shù).行程.相遇和追及公式.doc_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余8頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

相遇和追及問題一行程問題是研究物體運(yùn)動的,它研究的是物體速度、時間、路程三者之間的關(guān)系?;竟剑?路程速度時間 速度路程時間 時間路程速度關(guān)鍵問題:確定行程過程中的位置二相遇甲從A地到B地,乙從B地到A地,然后兩人在途中相遇,實(shí)質(zhì)上是甲和乙一起走了A,B之間這段路程,如果兩人同時出發(fā),那么相遇路程甲走的路程+乙走的路程甲的速度相遇時間+乙的速度相遇時間(甲的速度+乙的速度)相遇時間速度和相遇時間.相向運(yùn)動相遇問題的 速度和相遇時間總路程,即 數(shù)量關(guān)系 總路程速度和相遇時間 總路程相遇時間速度和三追及有兩個人同時行走,一個走得快,一個走得慢,當(dāng)走得慢的在前,走得快的過了一些時間就能追上他.這就產(chǎn)生了“追及問題”.實(shí)質(zhì)上,要算走得快的人在某一段時間內(nèi),比走得慢的人多走的路程,也就是要計算兩人走的路程之差(追及路程).如果設(shè)甲走得快,乙走得慢,在相同的時間(追及時間)內(nèi):追及路程甲走的路程-乙走的路程甲的速度追及時間-乙的速度追及時間(甲的速度-乙的速度)追及時間速度差追及時間. 一般地追擊問題的 追及路程速度差追及時間,即 數(shù)量關(guān)系 速度差追及路程追及時間 追及時間追及路程速度差 【分段提速 】 環(huán)路周長(路程差)速度差相遇時間環(huán)路上【同向運(yùn)動】追擊問題 環(huán)路周長相遇時間速度差 數(shù)量關(guān)系 速度差相遇時間環(huán)路周長速度和相遇時間環(huán)路周長 路程差速度差相同走過的時間往返平均速度往返總路程往返總時間 平均速度總路程總時間1、“環(huán)形跑道”,也是稱為封閉回路,它可以是圓形的、長方形的、三角形的,也可以是由長方形和兩個半圓組成的運(yùn)動場形狀。解題時,我們可以運(yùn)動“轉(zhuǎn)化法”把線路“拉直”或“截斷”,從布把物體在“環(huán)形路道”上的運(yùn)動轉(zhuǎn)化為我們熟悉的物體在直線上的運(yùn)動。2、在行程問題中,與環(huán)形有關(guān)的行程問題的解決方法與一般行程問題的方法類似,但有兩點(diǎn)值得注意:一是兩人同地背向運(yùn)動,從第一次相遇到下一次相遇共行一個全程;而是同地、同向運(yùn)動時,甲追上乙時甲比乙多行一個行程。環(huán)形跑道問題,從同一地點(diǎn)出發(fā),如果是相向而行,則每合走一圈相遇一次;如果是同向而行,則每追上一圈相遇一次這個等量關(guān)系往往成為我們解決問題的關(guān)鍵。環(huán)線型同一出發(fā)點(diǎn)直徑兩端同向:路程差nSnS+0.5S相對(反向):路程和nSnS-0.5S比例知識精講:比例的知識是小學(xué)數(shù)學(xué)最后一個重要內(nèi)容,從某種意義上講仿佛扮演著一個小學(xué)“壓軸知識點(diǎn)”的角色。從一個工具性的知識點(diǎn)而言,比例在解很多應(yīng)用題時有著“得天獨(dú)厚”的優(yōu)勢,往往體現(xiàn)在方法的靈活性和思維的巧妙性上,使得一道看似很難的題目變得簡單明了。比例的技巧不僅可用于解行程問題,對于工程問題、分?jǐn)?shù)百分?jǐn)?shù)應(yīng)用題也有廣泛的應(yīng)用。我們常常會應(yīng)用比例的工具分析2個物體在某一段相同路線上的運(yùn)動情況,我們將甲、乙的速度、時間、路程分別用來表示,大體可分為以下兩種情況:1. 當(dāng)2個物體運(yùn)行速度在所討論的路線上保持不變時,經(jīng)過同一段時間后,他們走過的路程之比就等于他們的速度之比。相同時間內(nèi),速度倍數(shù)路程倍數(shù)。,這里因為時間相同,即,所以由得到,甲乙在同一段時間t內(nèi)的路程之比等于速度比2. 當(dāng)2個物體運(yùn)行速度在所討論的路線上保持不變時,走過相同的路程時,2個物體所用的時間之比等于他們速度的反比。路程一定時,時間和速度成反比,這里因為路程相同,即,由得,甲乙在同一段路程s上的時間之比等于速度比的反比。多次相遇問題:一、由簡單行程問題拓展出的多次相遇問題所有行程問題都是圍繞“路程速度時間”這一條基本關(guān)系式展開的,多人相遇與追及問題雖然較復(fù)雜,但只要抓住這個公式,逐步表征題目中所涉及的數(shù)量,問題即可迎刃而解二、多次相遇與全程的關(guān)系1. 兩地相向出發(fā): 第1次相遇,共走1個全程; 第2次相遇,共走3個全程; 第3次相遇,共走5個全程; , ; 第N次相遇,共走2N-1個全程;注意:除了第1次,剩下的次與次之間都是2個全程。即甲第1次如果走了N米,以后每次都走2N米。2. 同地同向出發(fā): 第1次相遇,共走2個全程; 第2次相遇,共走4個全程; 第3次相遇,共走6個全程; , ; 第N次相遇,共走2N個全程;3、多人多次相遇追及的解題關(guān)鍵多次相遇追及的解題關(guān)鍵 幾個全程多人相遇追及的解題關(guān)鍵 路程差三、解多次相遇問題的工具柳卡柳卡圖,不用基本公式解決,快速的解法是直接畫時間-距離圖,再畫上密密麻麻的交叉線,按要求數(shù)交點(diǎn)個數(shù)即可完成。折線示意圖往往能夠清晰的體現(xiàn)運(yùn)動過程中“相遇的次數(shù)”,“相遇的地點(diǎn)”,以及“由相遇的地點(diǎn)求出全程”,使用折線示意圖法一般需要我們知道每個物體走完一個全程時所用的時間是多少。如果不畫圖,單憑想象似乎對于像我這樣的一般人兒來說不容易。本講中的行程問題是特殊場地行程問題之一。是多人(一般至少兩人)多次相遇或追及的過程解決多人多次相遇與追擊問題的關(guān)鍵是看我們是否能夠準(zhǔn)確的對題目中所描述的每一個行程狀態(tài)作出正確合理的線段圖進(jìn)行分析。 一、在做出線段圖后,反復(fù)的在每一段路程上利用:路程和=相遇時間速度和路程差=追及時間速度差行程問題常用的解題方法及分類:公式法即根據(jù)常用的行程問題的公式進(jìn)行求解,這種方法看似簡單,其實(shí)也有很多技巧,使用公式不僅包括公式的原形,也包括公式的各種變形形式;有時條件不是直接給出的,這就需要對公式非常熟悉,可以推知需要的條件;圖示法在一些復(fù)雜的行程問題中,為了明確過程,常用示意圖作為輔助工具示意圖包括線段圖和折線圖圖示法即畫出行程的大概過程,重點(diǎn)在折返、相遇、追及的地點(diǎn)另外在多次相遇、追及問題中,畫圖分析往往也是最有效的解題方法;比例法行程問題中有很多比例關(guān)系,在只知道和差、比例時,用比例法可求得具體數(shù)值更重要的是,在一些較復(fù)雜的題目中,有些條件(如路程、速度、時間等)往往是不確定的,在沒有具體數(shù)值的情況下,只能用比例解題;分段法在非勻速即分段變速的行程問題中,公式不能直接適用這時通常把不勻速的運(yùn)動分為勻速的幾段,在每一段中用勻速問題的方法去分析,然后再把結(jié)果結(jié)合起來;方程法在關(guān)系復(fù)雜、條件分散的題目中,直接用公式或比例都很難求解時,設(shè)條件關(guān)系最多的未知量為未知數(shù),抓住重要的等量關(guān)系列方程常??梢皂樌蠼庑谐虇栴}是小升初考試和小學(xué)四大杯賽四大題型之一(計算、數(shù)論、幾何、行程)。具體題型變化多樣,形成10多種題型,都有各自相對獨(dú)特的解題方法?,F(xiàn)根據(jù)四大杯賽的真題研究和主流教材將小題型總結(jié)如下,希望各位看過之后給予更加明確的分類。一、一般相遇追及問題。包括一人或者二人時(同時、異時)、地(同地、異地)、向(同向、相向)的時間和距離等條件混合出現(xiàn)的行程問題。在杯賽中大量出現(xiàn),約占80%左右。建議熟練應(yīng)用標(biāo)準(zhǔn)解法,即s=vt結(jié)合標(biāo)準(zhǔn)畫圖(基本功)解答。二、復(fù)雜相遇追及問題。(1)多人相遇追及問題。比一般相遇追及問題多了一個運(yùn)動對象,即一般我們能碰到的是三人相遇追及問題。解題思路完全一樣,只是相對復(fù)雜點(diǎn),關(guān)鍵是標(biāo)準(zhǔn)畫圖的能力能否清楚表明三者的運(yùn)動狀態(tài)。(2)多次相遇追及問題。即兩個人在一段路程中同時同地或者同時異地反復(fù)相遇和追及,俗稱反復(fù)折騰型問題。分為標(biāo)準(zhǔn)型(如已知兩地距離和兩者速度,求n次相遇或者追及點(diǎn)距特定地點(diǎn)的距離或者在規(guī)定時間內(nèi)的相遇或追及次數(shù))和純周期問題(少見,如已知兩者速度,求一個周期后,即兩者都回到初始點(diǎn)時相遇、追及的次數(shù))。標(biāo)準(zhǔn)型解法固定,不能從路程入手,將會很繁,最好一開始就用求單位相遇、追及時間的方法,再求距離和次數(shù)就容易得多。如果用折線示意圖只能大概有個感性認(rèn)識,無法具體得出答案,除非是非考試時間仔細(xì)畫標(biāo)準(zhǔn)尺寸圖。一般用到的時間公式是(只列舉甲、乙從兩端同時出發(fā)的情況,從同一端出發(fā)的情況少見,所以不贅述):單程相遇時間:t單程相遇=s/(v甲+v乙)單程追及時間:t單程追及=s/(v甲-v乙)第n次相遇時間:Tn= t單程相遇(2n-1)第m次追及時間:Tm= t單程追及(2m-1)限定時間內(nèi)的相遇次數(shù):N相遇次數(shù)= (Tn+ t單程相遇)/2 t單程相遇限定時間內(nèi)的追及次數(shù):M追及次數(shù)= (Tm+ t單程追及)/2 t單程追及注:是取整符號之后再選取甲或者乙來研究有關(guān)路程的關(guān)系,其中涉及到周期問題需要注意,不要把運(yùn)動方向搞錯了。三、火車問題。特點(diǎn)無非是涉及到車長,火車過橋時間是指從車頭上橋起到車尾離橋所用的時間,因此火車的路程是橋長與車身長度之和?;疖嚺c人錯身時,忽略人本身的長度,兩者路程和為火車本身長度;火車與火車錯身時,兩者路程和則為兩車身長度之和。題型分為:(1)火車vs點(diǎn)(靜止的,如電線桿和運(yùn)動的,如人)s火車=(v火車 v人)t經(jīng)過(2)火車vs線段(靜止的,如橋和運(yùn)動的,如火車)s火車+s橋=v火車t經(jīng)過和s火車1+s火車2=(v火車1v火車2)t經(jīng)過合并(1)和(2)來理解即s和=v相對t經(jīng)過把電線桿、人的水平長度想象為0即可?;疖噯栴}足見基本公式的應(yīng)用廣度,只要略記公式,火車問題一般不是問題。(3)坐在火車?yán)?。本身所在火車的車長就形同虛設(shè)了,注意的是相對速度的計算。電線桿、橋、隧道的速度為0。火車與火車上的人錯身時,只要認(rèn)為人具備所在火車的速度,而忽略本身的長度,那么他所看到的錯車的相應(yīng)路程仍只是對面火車的長度.對于火車過橋、火車和人相遇、火車追及人、以及火車和火車之間的相遇、追及等等這幾種類型的題目,在分析題目的時候一定得結(jié)合著圖來進(jìn)行四、流水行船問題。理解了相對速度,流水行船問題也就不難了。理解記住1個公式(順?biāo)?靜水船速+水流速度)就可以順勢理解和推導(dǎo)出其他公式(逆水船速=靜水船速-水流速度,靜水船速=(順?biāo)?逆水船速)2,水流速度=(順?biāo)?逆水船速)2),對于流水問題也就夠了。技巧性結(jié)論如下:(1)相遇追及。水流速度對于相遇追及的時間沒有影響,即對無論是同向還是相向的兩船的速度差不構(gòu)成“威脅”,大膽使用為善。當(dāng)甲、乙兩船(甲在上游、乙在下游)在江河里相向開出:甲船順?biāo)俣?乙船逆水速度=(甲船速+水速)(乙船速-水速)=甲船船速+乙船船速 同樣道理,如果兩只船,同向運(yùn)動,一只船追上另一只船所用的時間,與水速無關(guān).甲船順?biāo)俣?乙船順?biāo)俣?(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.說明:兩船在水中的相遇與追及問題同靜水中的及兩車在陸地上的相遇與追及問題一樣,與水速沒有關(guān)系.(2) 流水落物。漂流物速度=水流速度,t1= t2(t1:從落物到發(fā)現(xiàn)的時間段,t2:從發(fā)現(xiàn)到拾到的時間段)與船速、水速、順行逆行無關(guān)。此結(jié)論所帶來的時間等式常常非常容易的解決流水落物問題,其本身也非常容易記憶。五、間隔發(fā)車問題??臻g理解稍顯困難,證明過程對快速解題沒有幫助。一旦掌握了3個基本公式,一般問題都可以迎刃而解。(1)在班車?yán)?。即柳卡問題。不用基本公式解決,快速的解法是直接畫時間-距離圖,再畫上密密麻麻的交叉線,按要求數(shù)交點(diǎn)個數(shù)即可完成。(2)在班車外。一般間隔發(fā)車問題,聯(lián)立3個基本公式:汽車間距=(汽車速度+行人速度)相遇事件時間間隔-1汽車間距=(汽車速度-行人速度)追及事件時間間隔-2汽車間距=汽車速度汽車發(fā)車時間間隔-31、2合并理解,即汽車間距=相對速度時間間隔分為2個小題型:1. 一般間隔發(fā)車問題。用3個公式迅速作答;2.求到達(dá)目的地后相遇和追及的公共汽車的輛數(shù)。標(biāo)準(zhǔn)方法是:畫圖-盡可能多的列3個好使公式-結(jié)合s全程=vt-結(jié)合植樹問題數(shù)數(shù)。六、平均速度問題。相對容易的題型。大公式要牢牢記?。嚎偮烦?平均速度總時間。用s=vt寫出相應(yīng)的比要比直接寫比例式好理解并且規(guī)范,形成行程問題的統(tǒng)一解決方案。七、環(huán)形問題。是一類有挑戰(zhàn)性和難度的題型,分為“同一路徑”、“不同路徑”、“真實(shí)相遇”、“能否看到”等小題型。其中涉及到周期問題、幾何位置問題(審題不仔細(xì)容易漏掉多種位置可能)、不等式問題(針對“能否看到”問題,即問甲能否在線段的拐角處看到乙)。仍舊屬于就題論題范疇。八、時鐘問題。時鐘問題可以看做是一個特殊的圓形軌道上2人追及問題,不過這里的兩個“人”分別是時鐘的分針和時針。時鐘問題有別于其他行程問題是因為它的速度和總路程的度量方式不再是常規(guī)的米每秒或者千米每小時,而是2個指針“每分鐘走多少角度”或者“每分鐘走多少小格”。時鐘問題是環(huán)形問題的特定引申?;娟P(guān)系式:v分針= 12v時針(1)總結(jié)記憶:時針每分鐘走1/12格,0.5;分針每分鐘走1格,6。時針和分針“半”天共重合11次,成直線共11次,成直角共22次(都在什么位置需要自己拿表畫圖總結(jié))。(2)基本解題思路:路程差思路。即格或角(分針)=格或角(時針)+格或角(差)格:x=x/12+(開始時落后時針的格+終止時超過時針的格)角:6x=x/2+(開始時落后時針的角度+終止時超過時針的角度)可以解決大部分時針問題的題型,包括重合、成直角、成直線、成任意角度、在哪兩個格中間,和哪一個時刻形成多少角度。(3)壞鐘問題。所用到的解決方法已經(jīng)不是行程問題了,變成比例問題了,有相應(yīng)的比例公式。九、自動扶梯問題。仍然用基本關(guān)系式s扶梯級數(shù)=(v人速度v扶梯速度)t上或下解決最漂亮。這里的路程單位全部是“級”,唯一要注意的是t上或下要表示成實(shí)際走的級數(shù)/人的速度??梢訮K掉絕大部分自動扶梯問題。十、十字路口問題。即在不同方向上的行程問題。沒有特殊的解題技巧,只要老老實(shí)實(shí)把圖畫對,再通過幾何分析就可以解決。十一、校車問題。就是這樣一類題:隊伍多,校車少,校車來回接送,隊伍不斷步行和坐車,最終同時到達(dá)目的地(即到達(dá)目的地的最短時間,不要求證明)分4種小題型:根據(jù)校車速度(來回不同)、班級速度(不同班不同速)、班數(shù)是否變化分類。(1)車速不變-班速不變-班數(shù)2個(最常見)(2)車速不變-班速不變-班數(shù)多個(3)車速不變-班速變-班數(shù)2個(4)車速變-班速不變-班數(shù)2個標(biāo)準(zhǔn)解法:畫圖-列3個式子:1、 總時間=一個隊伍坐車的時間+這個隊伍步行的時間;2、班車走的總路程;3、一個隊伍步行的時間=班車同時出發(fā)后回來接它的時間。最后會得到幾個路程段的比值,再根據(jù)所求代數(shù)即可。十二、保證往返類。簡單例題:A、B兩人要到沙漠中探險,他們每天向沙漠深處走20千米,已知每人最多可以攜帶一個人24天的食物和水。如果不準(zhǔn)將部分食物存放于途中,其中一個人最遠(yuǎn)可深入沙漠多少千米(要求兩人返回出發(fā)點(diǎn))?這類問題其實(shí)屬于智能應(yīng)用題類。建議推導(dǎo)后記憶結(jié)論,以便考試快速作答。每人可以帶夠t天的食物,最遠(yuǎn)可以走的時間T(1)返回類。(保證一個人走的最遠(yuǎn),所有人都要活著回來)1、兩人:如果中途不放食物:T=2/3t;如果中途放食物:T=3/4t。2、多人:沒搞明白,建議高手補(bǔ)充。(2)穿沙漠類(保證一個人穿過沙漠不回來了,其他人都要活著回來)共有n人(包括穿沙漠者)即多人助1人穿沙漠類。1、中途不放食物:T2n/(n+1)t。T是穿沙漠需要的天數(shù)。2、中途放食物:T=(1+1/3+1/5+1/7+1/(2n-1)t還有幾類不甚常見的雜題,沒有典型性和代表性,在此不贅述。在研究追及和相遇問題時,一般都隱含以下兩種條件:(1)在整個被研究的運(yùn)動過程中,2個物體所運(yùn)行的時間相同(2)在整個運(yùn)行過程中,2個物體所走的是同一路徑。牛吃草問題概念及公式牛吃草問題又稱為消長問題或牛頓牧場,是17世紀(jì)英國偉大的科學(xué)家牛頓提出來的。典型牛吃草問題的條

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論