信息技術(shù)應(yīng)用用《幾何畫板》探究點(diǎn)的軌跡:橢圓 (2).doc_第1頁
信息技術(shù)應(yīng)用用《幾何畫板》探究點(diǎn)的軌跡:橢圓 (2).doc_第2頁
信息技術(shù)應(yīng)用用《幾何畫板》探究點(diǎn)的軌跡:橢圓 (2).doc_第3頁
信息技術(shù)應(yīng)用用《幾何畫板》探究點(diǎn)的軌跡:橢圓 (2).doc_第4頁
信息技術(shù)應(yīng)用用《幾何畫板》探究點(diǎn)的軌跡:橢圓 (2).doc_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

橢圓及其標(biāo)準(zhǔn)方程一、學(xué)習(xí)目標(biāo)(1)知識(shí)和技能目標(biāo)理解橢圓的定義; 掌握橢圓的標(biāo)準(zhǔn)方程及其簡單應(yīng)用。(2)過程與方法目標(biāo)通過對橢圓方程的推導(dǎo),鞏固用坐標(biāo)法求動(dòng)點(diǎn)軌跡方程,同時(shí)對學(xué)生進(jìn)行數(shù)形結(jié)合的思想方法的滲透,培養(yǎng)學(xué)生的邏輯思維能力和探究歸納的能力。(3)情感態(tài)度和價(jià)值觀目標(biāo)通過本節(jié)課的學(xué)習(xí),讓學(xué)生感受數(shù)學(xué)概念的嚴(yán)謹(jǐn)與推理的價(jià)值,增強(qiáng)學(xué)生戰(zhàn)勝困難的意志品質(zhì)并體會(huì)數(shù)學(xué)中的簡潔美、對稱美。二、 重點(diǎn)、難點(diǎn)重點(diǎn):橢圓的定義,橢圓的標(biāo)準(zhǔn)方程,坐標(biāo)化的基本思想。難點(diǎn):橢圓標(biāo)準(zhǔn)方程的推導(dǎo)與化簡。三、教學(xué)過程1、創(chuàng)設(shè)情境,激發(fā)興趣引入新課 給出橢圓的一些實(shí)物圖片:相框、汽車標(biāo)志、天體運(yùn)行圖等。2、動(dòng)手操作,理性概括(1)動(dòng)手操作展示動(dòng)畫及實(shí)例演示畫圖(規(guī)則):1取一條細(xì)線,一張紙板;2在紙板上取兩點(diǎn)分別標(biāo)上F1、F2 ;3把細(xì)線的兩端分別固定在F1、F2 兩點(diǎn);4用筆尖把細(xì)線拉緊,在紙板上慢慢移動(dòng)畫出圖形。同桌為一組動(dòng)手操作,并給予展示。根據(jù)剛才的實(shí)驗(yàn)請同學(xué)們回答下面幾個(gè)題:(1)在畫橢圓的過程中,細(xì)繩的兩端的位置是固定的還是運(yùn)動(dòng)的?(2)在畫橢圓的過程中,繩子的長度變了沒有?說明了什么?(3)在畫橢圓的過程中,繩子長度與兩定點(diǎn)距離大小有怎樣的關(guān)系?答:(1) ;(2) ;(3) 。(2)問題討論討論:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(線長)的點(diǎn)的軌跡就叫橢圓嗎? 1當(dāng)線長大于|F1F2|時(shí),筆尖的軌跡是什么?2當(dāng)線長等于|F1F2|時(shí),筆尖的軌跡是什么?3當(dāng)線長小于|F1F2|時(shí),筆尖的軌跡是什么?3答:(1) ;(2) ;(3) 。思考: 橢圓是怎樣定義的?(3)橢圓的定義的建立定義:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。定點(diǎn)F1、F2叫做橢圓的焦點(diǎn);兩焦點(diǎn)之間的距離叫做焦距,焦距記為2c, 即:|F1F2|2c.。 我們通常把橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和記為2a .定義式:M為橢圓上的點(diǎn)(2a2c0)【提升總結(jié)】在平面內(nèi)動(dòng)點(diǎn)M到兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于定值2a的點(diǎn)的軌跡不一定為橢圓。分類:|MF1|+ |MF2|F1F2| |MF1|+ |MF2|=|F1F2| |MF1|+ |MF2|F1F2| 3、理解內(nèi)涵,鞏固定義出示例1:例:用定義判斷下列動(dòng)點(diǎn)M的軌跡是否為橢圓并說出所給值的幾何意義。(1)到F1(-2,0)、F2(2,0)的距離之和為6的點(diǎn)的軌跡?(2)到F1(0,-2)、F2(0,2)的距離之和為4的點(diǎn)的軌跡?(3)到F1(-2,0)、F2(2,0)的距離之和為3的點(diǎn)的軌跡?答:(1) ;(2) ; (3) 。4、揭示主旨,突破難點(diǎn)問題:1求曲線方程的一般步驟? 。2 求橢圓標(biāo)準(zhǔn)方程時(shí),如何建立坐標(biāo)系?動(dòng)點(diǎn)滿足的條件是什么? 。(1)討論問題(2)完成方程的化簡過程,突破難點(diǎn)方程推導(dǎo): 以直線F1F2為x軸,線段F1F2的垂直平分線為y軸,建立如圖坐標(biāo)系設(shè)M(x,y)為橢圓上的任意一點(diǎn),|F1F2|2c(c0), F1(-c,0)、F2(c,0)學(xué)生完成含兩個(gè)根式的方程的化簡:“移項(xiàng)后兩次平方法” .(3)出示探究活動(dòng):填充兩種方程對比表圖像定義方程焦點(diǎn)坐標(biāo)a,b,c的關(guān)系判斷焦點(diǎn)位置的方法5、具體應(yīng)用,鞏固新知例題教學(xué):例2:判斷分別滿足下列條件的動(dòng)點(diǎn)M的軌跡是否為橢圓,如果是,求出標(biāo)準(zhǔn)方程(1)到點(diǎn)和點(diǎn)的距離之和為6的點(diǎn)的軌跡; (2)到點(diǎn)和點(diǎn)的距離之和為4的點(diǎn)的軌跡;(3)到點(diǎn)和點(diǎn)的距離之和為6的點(diǎn)的軌跡; (4)到點(diǎn)和點(diǎn)的距離之和為4的點(diǎn)的軌跡 答(1) ;(2) ;(3) ;(4) 。鞏固練習(xí):已知橢圓的方程為:,請?zhí)羁眨?1) a=_,b=_,c=_,焦點(diǎn)坐標(biāo)為 ,焦距等于 .(2)若C為橢圓上一點(diǎn),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),并且|CF1|=2,則|CF2|=_。 6、反饋訓(xùn)練、知識(shí)升華檢測一: 教材第36頁 練習(xí)1,21、 如果橢圓上一點(diǎn)P到焦點(diǎn)的距離等于6,那么點(diǎn)P到另一個(gè)焦點(diǎn)的距離是 ?2、 寫出適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)a=4,b=1,焦點(diǎn)在X軸上;(2)a=4,c=,焦點(diǎn)在y軸上;(3)a+b=10.c=.(1) ;(2) ;(3) .檢測二:下列方程哪些表示的是橢圓,如果是,判斷它的焦點(diǎn)在哪個(gè)坐標(biāo)軸上?(1、2必做,3、4選做) (1) ;(2) . 7、 回顧反思,形成體系(1)橢圓定義: ; (2) 標(biāo)準(zhǔn)方程: 。 8、布置作業(yè),課外擴(kuò)展教

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論