天津市薊州區(qū)2019屆高三數(shù)學上學期期中試卷文(含解析).docx_第1頁
天津市薊州區(qū)2019屆高三數(shù)學上學期期中試卷文(含解析).docx_第2頁
天津市薊州區(qū)2019屆高三數(shù)學上學期期中試卷文(含解析).docx_第3頁
天津市薊州區(qū)2019屆高三數(shù)學上學期期中試卷文(含解析).docx_第4頁
天津市薊州區(qū)2019屆高三數(shù)學上學期期中試卷文(含解析).docx_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2018-2019學年天津市薊州區(qū)高三(上)期中數(shù)學試卷(文科)一、選擇題(本大題共8小題,共40.0分)1.設全集為R,集合,則A. B. C. D. 【答案】C【解析】【分析】利用交集定義直接求解【詳解】全集為R,集合,故選:C【點睛】本題考查交集的求法,考查交集定義等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題2.設變量x,y滿足約束條件,則目標函數(shù)的最大值為A. 4 B. 12 C. 13 D. 28【答案】B【解析】【分析】作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值【詳解】作出變量x,y滿足約束條件對應的平面區(qū)域陰影部分,由,得,平移直線,由圖象可知當直線經(jīng)過點A時,直線的截距最大,此時z最大由,解得此時z的最大值為故選:B【點睛】本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法3. 如圖所示,程序框圖(算法流程圖)的輸出結(jié)果是( )A. 34 B. 55 C. 78 D. 89【答案】B【解析】試題分析:由題意, ,從而輸出,故選B.考點:1.程序框圖的應用.視頻4.設,則“”是“”的A. 充分而不必要條件 B. 必要而不充分條件C. 充要條件 D. 既不充分也不必要條件【答案】B【解析】【分析】把,轉(zhuǎn)化為,把轉(zhuǎn)化為,由推不出,得“”是“”的必要而不充分條件【詳解】,推不出, “”是“”的必要而不充分條件故選:B【點睛】本題考查了充要條件的判定,考查了推理能力與計算能力,屬于基礎題5.已知,則a,b,c的大小關(guān)系為A. B. C. D. 【答案】B【解析】【分析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解【詳解】,b,c的大小關(guān)系為故選:B【點睛】本題考查三個數(shù)的大小的比較,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎知識,考查運算求解能力,是基礎題6.將函數(shù)的圖象向右平移個單位長度,所得圖象對應的函數(shù)()A. 在區(qū)間上單調(diào)遞減B. 在區(qū)間上單調(diào)遞增C. 在區(qū)間上單調(diào)遞減D. 在區(qū)間上單調(diào)遞增【答案】B【解析】試題分析:將函數(shù)的圖象向右平移個單位長度,得,函數(shù)在上為增函數(shù)考點:函數(shù)圖象的平移、三角函數(shù)的單調(diào)性視頻7.已知函數(shù)的定義域為當時,;當時,;當時,則A. B. C. 0 D. 2【答案】C【解析】【分析】推導出,由此能求出結(jié)果【詳解】函數(shù)的定義域為當時,;當時,;當時,故選:C【點睛】本題考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎知識,考查運算求解能力,是基礎題8.在中,設點P,Q滿足,若,則A. B. C. D. 2【答案】B【解析】【分析】利用向量的數(shù)量積公式運算可得【詳解】因為,故選:B【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算屬基礎題二、填空題(本大題共6小題,共30.0分)9.已知函數(shù),其中a為實數(shù),為的導函數(shù),若是自然對數(shù)的底數(shù),則a的值為_【答案】1【解析】【分析】根據(jù)題意,求出函數(shù)的導數(shù),將代入計算可得,解可得a的值,即可得答案【詳解】根據(jù)題意,函數(shù),則函數(shù),若,則,解可得;故答案為:1【點睛】本題考查導數(shù)的計算,關(guān)鍵是掌握導數(shù)的計算公式,屬于基礎題10.數(shù)列滿足,且,_【答案】6【解析】【分析】利用數(shù)列的遞推關(guān)系式,求解即可【詳解】數(shù)列滿足,且,故答案為:6【點睛】本題考查數(shù)列的遞推關(guān)系式的應用,考查計算能力11.已知圓C經(jīng)過,兩點,圓心在x軸上則C的方程為_【答案】【解析】設圓,將坐標代入可得。12.已知函數(shù),若,則a的取值范圍_【答案】【解析】【分析】由題可以判斷出在R上單調(diào)遞增,從而由得出,解出該不等式即可得出a的取值范圍【詳解】和在R上都是增函數(shù);在R上單調(diào)遞增;由得,;解得,或;的取值范圍為故答案為:【點睛】本題考查指數(shù)函數(shù)的單調(diào)性,函數(shù)單調(diào)性的定義,以及一元二次不等式的解法屬中檔題.13.已知a,且直線過函數(shù)且的定點,則的最小值為_【答案】54【解析】【分析】先求出過定點,再代入直線方程得,最后用基本不等式可得【詳解】因為函數(shù)過定點,直線過,當且僅當,即,即,時,取等故答案為54【點睛】本題考查了基本不等式及其應用屬中檔題14.已知函數(shù),且在內(nèi)有且僅有兩個不同的零點,則實數(shù)m的取值范圍是_【答案】,【解析】【分析】由,即,作出兩個函數(shù)的圖象,利用數(shù)形結(jié)合即可得到結(jié)論【詳解】由,即,分別作出函數(shù)和的圖象如圖:由圖象可知,表示過定點的直線,當過時,此時兩個函數(shù)有兩個交點,此時滿足條件的m的取值范圍是,當過時,解得,此時兩個函數(shù)有兩個交點,當與相切時,兩個函數(shù)只有一個交點,此時,由,可得,此時直線和相切,要使函數(shù)有兩個零點,則或,故答案為:,【點睛】本題主要考查函數(shù)零點的應用,利用數(shù)形結(jié)合是解決此類問題的基本方法,考查運算能力,屬于中檔題三、解答題(本大題共6小題,共80.0分)15.某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游. (1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率【答案】(1) ;(2) 【解析】試題分析:利用列舉法把試驗所含的基本事件一一列舉出來,然后再求出事件A中的基本事件數(shù),利用公式P(A)求出事件A的概率.試題解析: ()由題意知,從6個國家中任選兩個國家,其一切可能的結(jié)果組成的基本事件有: ,共個.所選兩個國家都是亞洲國家的事件所包含的基本事件有:,共個,則所求事件的概率為:.()從亞洲國家和歐洲國家中各任選一個,其一切可能的結(jié)果組成的基本事件有:,共個,包含但不包括的事件所包含的基本事件有:,共個,所以所求事件的概率為:.【考點】古典概型【名師點睛】(1)對于事件A的概率的計算,關(guān)鍵是要分清基本事件總數(shù)n與事件A包含的基本事件數(shù)m.因此必須解決以下三個方面的問題:第一,本試驗是否是等可能的;第二,本試驗的基本事件數(shù)有多少個;第三,事件A是什么,它包含的基本事件有多少個.(2)如果基本事件的個數(shù)比較少,可用列舉法把古典概型試驗所包含的基本事件一一列舉出來,然后再求出事件A中的基本事件數(shù),利用公式P(A)求出事件A的概率,這是一個形象、直觀的好方法,但列舉時必須按照某一順序做到不重不漏.16.已知函數(shù)1求函數(shù)的最小正周期;2當時,求函數(shù)的值域【答案】(1); (2).【解析】【分析】化簡可得,再由周期公式計算得答案;在區(qū)間為增函數(shù),在區(qū)間為減函數(shù),分別求出,的值得答案【詳解】,;由,得,由,可得,在區(qū)間為增函數(shù),在區(qū)間為減函數(shù),又,當時,函數(shù)的值域為【點睛】本題考查三角函數(shù)恒等變換應用,考查三角函數(shù)的周期性和單調(diào)性,屬中檔題17.設函數(shù)若,求在點處的切線方程;求函數(shù)的單調(diào)區(qū)間,并求函數(shù)的極大值和極小值【答案】(1); (2).【解析】【分析】代入a,b的值,計算,求出切線方程即可;求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可【詳解】,故點處切線的斜率為:,故切線方程是;,由,解得:,由,解得:或,故在遞增,在,遞減列表如下:xa3a00b函數(shù)的極大值為b,極小值為【點睛】本題考查了切線方程問題,考查函數(shù)的單調(diào)性,極值問題,考查導數(shù)的應用,是一道綜合題18.在中,角A,B,C的對邊分別為a,b,c,的外接圓半徑且滿足1求角B和邊b的大??;2若,求的面積【答案】(1),; (2).【解析】【分析】由已知利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式化簡可得,由于,可求,可求,利用正弦定理可求b的值由余弦定理解得a的值,根據(jù)三角形面積公式即可計算得解【詳解】由已知,整理得,即,又,由余弦定理,得:,即:,解得:,舍【點睛】本題主要考查了三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,正弦定理,三角形面積公式在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于基礎題19.設等差數(shù)列的公差為d,前項和為,等比數(shù)列的公比為已知,()求數(shù)列,的通項公式;()當時,記,求數(shù)列的前項和【答案】(1)見解析 (2) 【解析】試題分析:(1)本題求等差數(shù)列與等比數(shù)列的通項公式,可先求得首項()和公差(公比),然后直接寫出通項公式,這種方法稱為基本量法;(2)由于,可以看作是一個等差數(shù)列與等比數(shù)列對應項相乘所得,其前項和用乘公比錯位相減法可求試題解析:(1)由題意知:(2)由(1)知:(1)(2)由(1)(2)得:考點:等差數(shù)列與等比數(shù)列的通項公式,錯位相減法視頻20.已知a,b為常數(shù),且,函數(shù),是自然對數(shù)的底數(shù)求實數(shù)b的值;求函數(shù)的單調(diào)增區(qū)間;當時,是否同時存在實數(shù)m和,使得對每一個,直線與曲線,都有公共點?若存在,求出最小的實數(shù)m和最大的實數(shù)M;若不存在,說明理由【答案】(1)(2)當時,函數(shù)的遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為當a0時,函數(shù)f(x)的遞增區(qū)間為(1,+),單調(diào)遞減區(qū)間為(0,1);(3)【解析】試題分析:(1)把x=e代入函數(shù)f(x)=-ax+b+axlnx,解方程即可求得實數(shù)b的值;(2)函數(shù)求導,并判斷導數(shù)的符號,確定函數(shù)的單調(diào)區(qū)間;(3)假設存在實數(shù)m和M(mM),使得對每一個tm,M,直線y=t與曲線y=f(x)(x,e)都有公共點,轉(zhuǎn)化為利用導數(shù)求函數(shù)y=f(x)在區(qū)間,e上的值域試題解析:(1)由得(2)由(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論