




已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
外文部分Chapter2Planewaves2.1IntroductionInthischapterwepresentthefoundationsofFourieracoustics-planewaveexpansions.Thismaterialispresentedindepthtoprovideafirmfoundationfortherestofthebook,introducingconceptslikewavenumberspaceandtheextrapolationofwavefieldsfromonesurfacetoanother.Fouriesacousticsisusedtoderivesomefamoustoolsfortheradiationfromplanarsources;theRayleighintegrals,theEwaldsphereconstructionoffarfieldradiation,thefirstproducttheoremforarrays,vibratingplateradiation,andradiationclassificationtheory.Finally,anewtoolcalledsupersonicintensityisintroducedwhichisusefulinlocatingacousticsourcesonvibratingstructures.Webeginthechapterwithareviewofsomefundamentals;thewaveequation,Eulersequation,andtheconceptofacousticintensity.2.2TheWaveEquationandEulersEquationLetp(x,y,z,t)beaninfinitesimalvariationofacousticpressurefromitsequilibriumvaluewhichsatisfiestheacousticwaveequation222210ppct(2.1)forahomogeneousfluidwithnoviscosity.cisaconstantandreferstothespeedofsoundinthemedium.At020Cc=343m/sinairandc=1481m/sinwater.TherighthandsideofEq.(2.1)indicatesthattherearenosourcesinthevolumeinwhichtheequationisvalid.InCartesiancoordinates2222222xyzAsecondequationwhichwillbeusedthroughoutthisbookiscalledEulersequation,0vpt(2.2)Wherev(Greekletterupsilon)representsthevelocityvectorwithcomponentsu,v,w;vuivjwk(2.3)whereijandkaretheunitvectorsinthethex,y,andzdirections,respectively,andthegradientintermsoftheunitvectorsasijkxyz(2.4)WeusetheconventionofadotoveradisplacementsquantitytoindicatevelocityasisdoneinJungerandFeit.Thedisplacementsinthethreecoordinatedirectionsaregivenbyu,v,andw.ThederivationofEq.(2.2)isusefulindevelopingsomeunderstandingofthephysicalmeaningofpandv.Letusproceedinthisdirection.Figure2.1:InfinitesimalvolumeelementtoillustrateEulersequationFigure2.1showsaninfinitesimalvolumeelementoffluidxyz,withthexaxisasshown.Allsixfacesexperienceforcesduetothepressurepinthefluid.Itisimportanttorealizethatpressureisascalarquantity.Thereisnodirectionassociatedwithit.Ithasunitsofforceperunitarea,2/NmorPascals.Thefollowingistheconventionforpressure,P0CompressionP0RarefactionAtaspecificpointinafluid.apositivepressureindicatesthataninfinitesimalvolumesurroundingthepointisundercompression,andforcesareexertedoutwardfromthisvolume.ItfollowsthatifthepressureattheleftfaceofthecubeinFig.2.1ispositive,thenaforcewillbeexertedinthepositivexdirectionofmagnitudep(x,y,z)yz.Thepressureattheoppositefacep(x+x,y,z)isexertedinthenegativexdirection.Weexpandp(x+x,y,z)inaTaylorseriestofirstorder,asshowninthefigure.Notethattheforcearrowsindicatethedirectionofforceforpositivepressure.Giventhedirectionsofforceshown,thetotalforceexertedonthevolumeinthexdirectionis(,)(,)ppxyzpxxyzyzxyzxNowweinvokeNewtonsequation,f=ma=mut,wherefistheforce,0mxyzand0isthefluiddensity,yielding0uptxCarryingoutthesameanalysisintheyandzdirectionsyieldsthefollowingtwoequations:0uptyand0uptzWecombinetheabovethreeequationsintooneusingvectorsyieldingEq(2.2)above,EulersEquation.2.3InstantaneousAcousticIntensityItiscriticalinthestudyofacousticstounderstandcertainenergyrelationships.Mostimportantistheacousticintensityvector.Inthetimedomainitiscalledtheinstantaneousacousticandisdefinedas()()()Itptvt,(2.5)withunitsofenergyperunittime(power)perunitarea,measuredas(joules/s)/2morwatts/2m.Theacousticintensityisrelatedtotheenergydensityethroughitsdivergence,eIt,(2.6)wherethedivergenceisyxzIIIIxyz(2.7)Theenergydensityisgivenby2211022|()|()evtpt(2.8)whereisthefluidcompressibility,201c(2.9)Equation(2.6)expressesthefactthatanincreaseintheenergydensityatsomepointinthefluidisindicatedbyanegativedivergenceoftheacousticintensityvector;theintensityvectorsarepointingintotheregionofincreaseinenergydensity.Figure2.2shouldmakethisclear.IfwereversethearrowsinFig.2.2,apositivedivergenceresultsandtheenergydensityatthecentermustdecrease,thatis,et0.Thiscaserepresentsanapparentsourceofenergyatthecenter.Figure2.2:Illustrationofnegativedivergenceofacousticintensity.Theregionatthecenterhasanincreasingenergydensitywithtime,thatis,anapparentsinkofenergy.2.4SteadyStateToconsiderphenomenainthefrequencydomain,weobtainthesteadythesteadystatesolutionthroughtransforms()1()2iwtptpwedw(2.10)leadingtothesteadystatesolution()()iwtpwptedt(2.11)Equation(2.10)canbedifferentiatedwithrespecttotimetoyieldtheimportantrelationship()1()2iw
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《溝通禮儀辦公室禮儀》任務(wù)書-電話禮儀
- 足球培訓(xùn)機(jī)構(gòu)運(yùn)營管理方案
- 中學(xué)生人工智能核心素養(yǎng)測評體系構(gòu)建與實(shí)踐
- 智能制造產(chǎn)業(yè)園基礎(chǔ)設(shè)施建設(shè)項(xiàng)目實(shí)施方案(參考模板)
- 虛擬現(xiàn)實(shí)體驗(yàn)中的用戶行為分析與干預(yù)策略-洞察闡釋
- 無人機(jī)與物聯(lián)網(wǎng)技術(shù)結(jié)合的LastMile配送模式-洞察闡釋
- 應(yīng)用型人才培養(yǎng)中的實(shí)驗(yàn)實(shí)訓(xùn)課程創(chuàng)新與探索
- 羅茨風(fēng)機(jī)項(xiàng)目投資風(fēng)險(xiǎn)評估報(bào)告
- 移動(dòng)支付對消費(fèi)者支付行為的調(diào)節(jié)效應(yīng)-洞察闡釋
- 公共建筑裝修材料耐久性研究的跨學(xué)科視角-洞察闡釋
- 醫(yī)療設(shè)備行業(yè)微生物學(xué)技術(shù)培訓(xùn)
- 心肺復(fù)蘇后病人的護(hù)理查房
- 電力銷售公司可行性方案
- 美世-2023-2024年度高端醫(yī)療保險(xiǎn)行業(yè)福利市場實(shí)踐調(diào)研報(bào)告
- 履行法定義務(wù)糾正違法行為的模板
- 電氣工程及其自動(dòng)化-10KV某中學(xué)教學(xué)樓配電系統(tǒng)設(shè)計(jì)
- 辦公用房自查表
- 三年級數(shù)學(xué)上冊三位數(shù)加減法計(jì)算練習(xí)500題
- 公司投標(biāo)書密封條模板
- 幼兒園拼音《aoe》學(xué)習(xí)課件
- 四川省樂山市市中區(qū)2022-2023學(xué)年七年級下學(xué)期期末英語試卷(含答案)
評論
0/150
提交評論