




已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PergamonComputers&FluidsVol.24,No.1,pp.55-62,1995Copyright01995ElsevierScienceLtd0045-7930(94)00020-4PrintedinGreatBritain.Allrightsreserved0045-7930/95$9.50+0.00PETROV-GALERKINFINITEELEMENTANALYSISFORADVANCINGFLOWFRONTINREACTIONINJECTIONMOLDINGNITINR.ANTURKARFordResearchLaboratory,FordMotorCompany,P.O.Box2053,MD3198,Dearborn,MI48121-2053,U.S.A.(Received4August1993;inrevisedform4May1994)Abstract-Anumericalschemeforcomputingtheadvancementofaflowfrontandrelatedvelocity,pressure,confersionandtemperaturedistributionsduringmoldfillinginreactioninjectionmolding(RIM)isdescribedinthiswork.IntheRIMprocess,theconvectivetermintheenergyequationisdominant.Therefore,thenumericalschemehasincorporatedaPetrov-Galerkinfiniteelementmethodtosuppressspuriousoscillationsandtoimproveaccuracyofthecalculations.Theotherfeatureofthenumericalschemeisthattheflowfrontlocationsarecomputedsimultaneouslywithprimaryvariablesbyusingasurfaceparameterizationtechnique.Thenumericalresultscomparewellwiththereportedexperimentaldata.ImprovedaccuracyobtainedbythisnumericalschemeintheflowfrontregionisexpectedtoassistinthepredictionsofthefiberorientationsandthebubblegrowthinRIM,whicharedeterminedprimarilybytheflowfrontregion.I.INTRODUCTIONReactioninjectionmolding(RIM)isawidelyusedprocesstomanufactureexteriorfasciasintheautomobileindustry.Inthisprocess,aprepolymerizedisocyanateandapolyol/aminemixturearemixedtogether,andinjectedintoamold,wherepolymerizationoccurs.Afountainfloweffectintheadvancingflowfrontregionduringthemold-fillingstageplaysanimportantroleindeterminingtheresidencetimeofthefluidelementsandincontrollingthefiberorientationsinthefinalproduct11.Anaccurates:imulationofthisflowfront,however,posesachallengingproblem.Evolvingflowdomainwithadvancingflowfrontrequiresupdatingofthenumericalgridsandpredictionofthemovingboundaryateverytimestep.Lowthermalconductivityofthematerial,highflowratesintheRIMprocess,andhighlyexothermicrapidreactionsresultinconvection-dominatedenergytransportequation,whichneedsaspecialnumericaltreatment.Besides,movingcontactlinesnearthewallsneedsuitableboundaryconditionsthatdonotintroducenumericalinstability.AnumericalschemethatincorporatesallthesecomplexfeaturesoftheRIMprocessisrequiredforaccuratepredictionsneartheflowfrontregion.Previousstudieseitherhavemadesimplifyingassumptionsregardingtheflowfrontregion2&l,orhavenotcomparedtheirresultswiththeexperiments5,6.Inthispaper,wedescribeanumericalschemeindetail,whichwilladdresstheabove-mentionedcomplexities,and.presentthereleventresultsthathighlightthenumericalscheme(refertoourearlierwork7forthedetaileddiscussionofthegoverningequationsandadditionalresults).Noaprioriassumptionsaremadeinthenumericalschemeregardingtheshapeofthenewfrontorthevelocitydistributionintheflowdomain.Afree-surfaceparameterizationtechniqueisused,inwhichtheshapeoftheflowfrontiscalculatedsimultaneouslywithotherfieldvariables,suchaspressure,velocitiesandconversion,byincorporatingkinematicboundaryconditionatthesurfaceoftheflowfrontasoneofthegoverningequations.AconventionalGalerkinfinite-elementtechniqueisnotoriousforitsnumericalinstabilityinconvection-dominatedtransportproblems8.Theresultingspuriousoscillationscanbeusuallyeliminatedbymeshrefinement.However,fortransientproblemdescribedhere,meshrefinementisanimpracticalandexpensivealternative.Theotheralternativesincludevariousupwindingschemes9-121,amethodofcharacteristics6,13,141,andaGalerkin/least-squarestechnique151.Althoughthe“conservative”methods,suchasmethodsofcharacteristicsandGalerkin/least-squarestechniquesaremoreaccurate,asimplePetrov-Galerkinupwindingmethodiseasierto5556NITINR.ANTURKARimplementandcosteffective,particularlyforatransientprobleminvestigatedinthiswork.Therefore,suchaschemeisimplementedherefollowingAdornatoandBrown9tosuppressnumericalinstabilitywithoutresolvingtoextremelyrefinedmeshes.ThegoverningequationsarepresentedbrieflyinSection2,andthenumericalmethodisdescribedindetailinSection3.ThetypicalresultsofthemoldfillingstageoftheRIMprocessinatwo-dimensionalrectangularplaquearepresentedinSection4.Theresultsarealsocomparedwiththereportedexperimentaldata2,andwiththenumericalresultsobtainedbyusingconventionalGalerkinfiniteelementmethod.2.GOVERNINGEQUATIONSThelumpedkineticrateexpressionforpolymerizationreactionsinRIMis16,171:ri=-A,exp(-E,/RT)Cr,(1)where,Ciistheisocyanateconcentration,Tthetemperature,Rthegas-lawconstant,mtheorderofthereaction,E,theactivationenergyofthereaction,andA,therateconstant.Theviscositydependsontheconversionandtemperature,andisexpressedintheformofCastroMacoskoviscosityfunction2,(X,T)=rl(X)-II(T)=A,exp()(iBXi,(2)whereXistheisocyanateconversion,X,thegelconversion,andA,E,AandBaretheconstants.Forconstantthermalpropertiesanddensityofthereactivemixture,andfornegligiblemoleculardiffusion,thedimensionlessgoverningequationsare,continuityequation:v.v=o;(3)conservationofmomentumequation:Re$+v.Vv=-pV.I+v:(rcj);Gz7,$+v-VX=Dak.(l-X)“;molebalanceequation:(4)(5)conservationofenergyequation:Gzg+vVT=V*T+Brrc(j:Vv)+Darc,(l-X)m;L.1(6)where,visthevelocityvector,qtherate-of-straintensor,tthetime,pthepressure,andk,isthedimensionlessrateconstant,definedasexp(-E,/R)(l/T-l/T,).TheequationsaremadedimensionlessusingtheaveragevelocityV,halfofthethicknessofthemoldH,andthetemperatureT,andtheviscosityqO(=r(X=0,T=T,)attheinletofthemold.AllthedimensionlessgroupsandtheirdefinitionsarelistedinTable1.Theboundaryconditionsintermsofdimensionlessvariablesare1.atthewalls:v,=0(no-slip),T=T,;2.atthemid-plane:aTjay=0,&Jay=0,V,=0;3.attheinlet:v=fullydevelopedflow,T=1,X=X,;4.atthecontactline:n*(-PI+2)=0(full-slip):5.attheflowfront:n.(-PI+2)=0(forcebalance),n.(v-ah/at)=0(kinematiccondition);Table1.Dimensionlessgroupsingoverningequations,whereAH,istheheatofreaction,AT,theadiabatictemperaturerise,andC,theinitialconcentrationofisocyanateGZGraetznumberVHpC,lkReReynoldsnumberHVlrloKviscosityratio41%BrBrinkmannnumbertoV=lkT,DaDamkohlernumber(AH,H*C$/kT,)A,exp(-E,/RT)TadbadiabatictemperatureriseAT,IT,Flowfrontadvancementinreactioninjectionmolding57wherea.,andvYarethecomponentsofthevelocityvectorv,IItheunitnormalvector,rtheextrastresstensor,hthelocationvectoroftheflowfrontandTwal,thedimensionlesstemperatureatthemoldwall.Thedetailsofincorporatingtheboundaryconditionsinthenumericalanalysisareexplainedinthenextsection.3.NUMERICALANALYSISInthefiniteelementformulationtheunknownvelocities,temperatureandconversionareexpandedintermsofthebiquadraticbasisfunctions4,thepressureintermsofthebilinearbasisfunctionsll/iandtheflowfrontshapehintermsofthequadraticbasisfunctions:(7)wherelandqarethecoordinatesinisoparametrictransformation,definedasi=1i=lintheisoparametricdomain(-14+1,-1qL(5),where,PeisthelocalelementPecletnumber(=VA/D),Atheelementsizeandc,(s)isthecubicpolynomial(=(5/8)5(-l)(t+1).Theindexi=1correspondstothevertexnodes,andi=258NITINR.ANTIJRKARcorrespondstothecentroidnodesintheelement.Thestandardone-dimensionalconvec-tiondiffusionproblemhasexactsolutionatthenodesif25,9c(Pe)=2tanh(Pe/2)l+(3/Pe)coth(Pe/4)-(X/Pe)-coth(Pe/4),(1la)c2=(16/Pe)-4coth(Pe/4).(1lb)Inatwo-dimensionalproblem,thetensorialproductofequations(10)and(11)providesthefunctioncintheweightingfunctionsdescribedinequation(9).ThelocalPecletnumberiscomputedforeachthree-nodegroupbasedontheaveragevelocitiesattherelevantboundariesinthetwo-dimensionalelement9.Therearesixsuchgroups(threeinthex-direction,andthreeinthey-direction)andthus,thereare12upwindingparametersE.ThecalculationsofthePecletnumberinvolvelineardistances,whichessentiallyneglectthecurvilinearsidesoftheelements.However,itisagoodapproximationsinceflowfrontisnotseverelydeformedinourproblem.Thediffusivitiesarel/GzfortheenergyequationandisK/Rforthemomentumequation.ThePetrov-Galerkinweightedresidualequationsare,-R:=(V.v)$dl=O,s-RL=IvReg+v.VvWfdV(12)+y-PI+(K+)VWidV-ssn.-pI+(lcf)WdS=O,(13)s-Brrc(j:Vv)-Dak,(l-X)”WdV1+sVT.VWdV-s(n.VT)WdS=O,(15)VS-RI=sn.(v-ah/&)4(+=1)dS=0.(16)swhere,VistheflowdomainandStheflowboundary.Theboundarytermsappearintheenergyandmomentumequationsbecausedivergencetheoremisappliedtothehigher-orderterms.TheresidualsR,R,R,R,andR,correspondtothevariablesp,v,X,Tandh,respectively.ThePetrov-Galerkinweightingfunctionsareusedonlyformomentumandenergyequationsduetothepresenceofconvectiontermsintheseequations.Beforeintegratingtheaboveequationsusinganine-pointGaussianquadrature,theequationsaremappedintheisoparametricdomain(referto26fordetails)andtheboundaryconditionsareapplied.TheessentialboundaryconditionsforvandTatthewalls;forv,TandXattheinletofthemold;andforv
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 重慶第二師范學(xué)院《英語(yǔ)視聽(tīng)說(shuō)Ⅰ》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東勝利職業(yè)學(xué)院《人文閱讀》2023-2024學(xué)年第二學(xué)期期末試卷
- 煙臺(tái)幼兒師范高等專科學(xué)?!赌[瘤生物標(biāo)志物與精準(zhǔn)醫(yī)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 西昌學(xué)院《商業(yè)攝影》2023-2024學(xué)年第二學(xué)期期末試卷
- 廈門(mén)華天涉外職業(yè)技術(shù)學(xué)院《體能訓(xùn)練》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖南師范大學(xué)《保教知識(shí)與能力》2023-2024學(xué)年第二學(xué)期期末試卷
- 漢中職業(yè)技術(shù)學(xué)院《高級(jí)微觀經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 江蘇師范大學(xué)科文學(xué)院《綜合設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東勞動(dòng)職業(yè)技術(shù)學(xué)院《文字版面設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 沈陽(yáng)科技學(xué)院《宏觀經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 三年級(jí)下冊(cè)語(yǔ)文單元字詞專項(xiàng)練習(xí)-第1單元
- 鳥(niǎo)巢建筑分析
- 聯(lián)合體施工組織設(shè)計(jì)審批流程
- 中華民族共同體概論課件專家版10第十講 中外會(huì)通與中華民族鞏固壯大(明朝時(shí)期)
- 2021年10月自考02326操作系統(tǒng)試題及答案含解析
- 中華民族共同體概論課件專家版5第五講 大一統(tǒng)與中華民族共同體初步形成(秦漢時(shí)期)
- MOOC 大數(shù)據(jù)與法律檢索-湖南師范大學(xué) 中國(guó)大學(xué)慕課答案
- GB/T 19964-2024光伏發(fā)電站接入電力系統(tǒng)技術(shù)規(guī)定
- MSDS基礎(chǔ)知識(shí)培訓(xùn)課件
- 疝氣護(hù)理課件
- 《造林綠化落地上圖操作技術(shù)規(guī)范》
評(píng)論
0/150
提交評(píng)論