電大復(fù)變函數(shù)形成性考核冊(cè)參考答案1_第1頁(yè)
電大復(fù)變函數(shù)形成性考核冊(cè)參考答案1_第2頁(yè)
電大復(fù)變函數(shù)形成性考核冊(cè)參考答案1_第3頁(yè)
電大復(fù)變函數(shù)形成性考核冊(cè)參考答案1_第4頁(yè)
電大復(fù)變函數(shù)形成性考核冊(cè)參考答案1_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、專(zhuān)業(yè)好文檔復(fù)變函數(shù)習(xí)題總匯與參考答案第1章 復(fù)數(shù)與復(fù)變函數(shù)一、單項(xiàng)選擇題1、若z1=(a, b),z2=(c, d),則z1z2=(c)a (ac+bd, a) b (ac-bd, b)c (ac-bd, ac+bd) d (ac+bd, bc-ad)2、若r0,則n(,r)= z:(d)a |z|r b 0|z|rc r|z|r3、若z=x+iy, 則y=(d)a b c d4、若a= ,則 |a|=(c)a 3 b 0 c 1 d 2二、填空題1、若z=x+iy, w=z2=u+iv, 則v=( 2xy )2、復(fù)平面上滿(mǎn)足rez=4的點(diǎn)集為( z=x+iy|x=4 )3、( 設(shè)e為點(diǎn)集,若

2、它是開(kāi)集,且是連通的,則e )稱(chēng)為區(qū)域。4、設(shè)z0=x0+iy0, zn=xn+iyn(n=1,2,),則zn以zo為極限的充分必要條件是 xn=x0,且 yn=y0。三、計(jì)算題1、求復(fù)數(shù)-1-i的實(shí)部、虛部、模與主輻角。解:re(-1-i)=-1 im(-1-i)=-1|-1-i|=2、寫(xiě)出復(fù)數(shù)-i的三角式。解:3、寫(xiě)出復(fù)數(shù) 的代數(shù)式。解:4、求根式 的值。解:四、證明題1、證明若 ,則a2+b2=1。證明:而 3、證明:證明:第2章 解析函數(shù)一、單項(xiàng)選擇題1若f(z)= x2-y2+2xyi,則2、若f(z)=u(x, y)+iv(x,y), 則柯西黎曼條件為(d)a bc d3、若f(z

3、)=z+1, 則f(z)在復(fù)平面上(c)a 僅在點(diǎn)z=0解析 b 無(wú)處解析c 處處解析 d 在z=0不解析且在z0解析4、若f(z)在復(fù)平面解析,g(z)在復(fù)平面上連續(xù),則f(z)+g(z)在復(fù)平面上(c)a解析 b 可導(dǎo)c連續(xù) d 不連續(xù)二、填空題1、若f(z)在點(diǎn)a不解析,則稱(chēng)a為f(z)的奇點(diǎn)。2、若f(z)在點(diǎn)z=1的鄰域可導(dǎo),則f(z)在點(diǎn)z=1解析。3、若f(z)=z2+2z+1,則 4、若 ,則 不存在。三、計(jì)算題:1、設(shè)f(z)=zre(z), 求解: =2、設(shè)f(z)=excosy+iexsiny,求解:f(z)=excosy+iexsiny=ez,z=x+iyu=excos

4、y v=exsinyf(z)=u+ivf(z)在復(fù)平面解析,且 =excosy+iexsiny3、設(shè)f(z)=u+iv在區(qū)域g內(nèi)為解析函數(shù),且滿(mǎn)足u=x3-3xy2,f(i)=0,試求f(z)。解:依c-r條件有vy=ux=3x2-3y2則v(x1y)=3x2y-y3+c(c為常數(shù))故f(z)=x3-3xy2+i(3x2y-y3+c)=x3-3xy2+i(cx2y-y3)+ic =z3+ic,為使f(i)=0, 當(dāng)x=0,y=1時(shí),f(i)=0, 有f(0)=-i+ic=0c=1 f(z)=z3+i4、設(shè)f(z)=u+iv在區(qū)域g內(nèi)為解析函數(shù),且滿(mǎn)足u=2(x-1)y,f(2)=-i,試求f(

5、z)。解:依c-r條件有vy=ux=2yv= =y2+(x) vx=(x)=v=y2-x2+2x+c(c為常數(shù))f(z)=2(x-1)y+i(y2-x2+2x+c)為使f(z)=-i,當(dāng)x=2 y=0時(shí),f(2)=ci=-i c=-1f(z)=2(x-1)y+i(y2-x2+2x-1) =-(z-1)2i四、證明題1、試在復(fù)平面討論f(z)=iz的解析性。解:令f(z)=u+iv z=x+iy則iz=i(x+iy)=-y+ixu=-y v=x于是ux=0 uy=-1vx=1 vy=0ux、uy、vx在復(fù)平面內(nèi)處處連接又ux=vy uy=-vx。f(z)=iz在復(fù)平面解析。2、試證:若函數(shù)f(z

6、)在區(qū)域g內(nèi)為解析函數(shù),且滿(mǎn)足條件(z)=0,zg,則f(z)在g內(nèi)為常數(shù)。證:設(shè)f(z)=u+iv,z=x+iy,zgf(z)在g內(nèi)解析,ux=vy, uy=-vx又(z)=0, (z)=ux+ivxux=0 vx=0uy=-vx=0 ux=vy=0u為實(shí)常數(shù)c1,v也為實(shí)常數(shù)c2,f(z)=c1+ic2=z0f(z)在g內(nèi)為常數(shù)。復(fù)變函數(shù)課程作業(yè)參考解答2第3章 初等函數(shù)一、單項(xiàng)選擇題1. z = ( a ) 是根式函數(shù)的支點(diǎn). (a) 0 (b) 1 (c) (d) i2. z = ( d ) 是函數(shù)的支點(diǎn). (a) i (b) 2i (c) -1 (d) 03. ei =( b ).

7、(a) e-1+e (b) cos1+isin1 (c) sin1 (d) cos14. sin1= ( a ) (a) (b) (c) (d) 二、填空題1. cosi = 2. = e(cos1+isin1)3. lni =4. ln(1+i) = k為整數(shù).三、計(jì)算題1. 設(shè)z=x+iy,計(jì)算.解: = = 2. 設(shè)z = x+iy, 計(jì)算. 解: z = x+iy 3. 求方程的解.解: lnz = 由對(duì)數(shù)函數(shù)的定義有: z= 所給方程的解為z = i4. 求方程的解.解: =根據(jù)指數(shù)函數(shù)的定義有:z=n2+i 或z=n(1+)四、證明題1. 試證: . 證明:根據(jù)正弦函數(shù)及余弦正數(shù)定

8、義有: sin2z=2sinzcosz2. 證明: . 證明: 令a= b=sinx+sin2x+sinnx = 第4章 解析函數(shù)的積分理論一、單項(xiàng)選擇題1. ( d ) , c為起點(diǎn)在0 , 終點(diǎn)在1+i的直線段. (a) 0 (b) 1 (c) 2i (d) 2(1+i)2. . (a) 0 (b) 10 (c) i (d) 3. (a) i (b) 10 (c) 10i (d) 04. =( a ). (a) (b) (c) (d) 二、填空題1. 若與沿曲線c可積,則.2. 設(shè)l為曲線c的長(zhǎng)度, 若f(z)沿c可積, 且在c上滿(mǎn)足,則.3. 4. 三、計(jì)算題1.計(jì)算積分,其中c為自0到

9、2+i的直線段. 解: c的方程為: 其次由得 = =2. 計(jì)算積分. 解: = 作區(qū)域d:積分途徑在d內(nèi)被積函數(shù)的奇點(diǎn)z=2與z=3均不在d內(nèi),所以被積函數(shù)在d內(nèi)解析.由定理4.2得:=03. 計(jì)算積分. 解: 奇點(diǎn)z=1和z=-1不在區(qū)域d,內(nèi) 的三個(gè)根也不在d內(nèi) 由定理4.2 得 =04. 計(jì)算積分, . 解: 由定理4.6得 四、證明題1. 計(jì)算積分,并由此證明. 證明:在圓域 |z|1內(nèi)解析 = 另一方面,在圓|z|= =(實(shí)部和虛部為0) = = = = =0 而為偶函數(shù)0= = 復(fù)變函數(shù)課程作業(yè)參考解答3第5章 解析函數(shù)的冪級(jí)數(shù)表示一、單項(xiàng)選擇題1. 冪級(jí)數(shù)的收斂半徑等于( b

10、) ( a ) 0 (b) 1 ( c ) 2 (d) 32. 點(diǎn)z=-1是f(z)=r ( b )級(jí)零點(diǎn). ( a ) 1 (b)2 (c)3 (d)53. 級(jí)數(shù)的收斂圓為( d ). (a) | z-1| 3 (b) |z|1 (d) |z| 14. 設(shè)f(z)在點(diǎn)a解析, 點(diǎn)b是f(z)的奇點(diǎn)中離點(diǎn)a最近的奇點(diǎn),于是,使f(z)=成立的收斂圓的半徑等于( c ). (a) a+b+1 (b) b-a+1(c) |a-b| (d) |a+b|二、填空題1.級(jí)數(shù)1+z+的收斂圓r=+即整個(gè)復(fù)平面2.若f(z)= (k為常數(shù)),則z=m(m=0, )為f(z)的 1 級(jí)零點(diǎn). 3.冪有數(shù)的收斂

11、半徑等于 0 . 4.z=0是f(z)=ez-1的 1 級(jí)零點(diǎn). 三、計(jì)算題 1.將函數(shù)f(z)=在點(diǎn)z=0展開(kāi)冪級(jí)數(shù). 解: f(z)= =- 2.將函數(shù)f(z)=(1-z)-2在點(diǎn)z=0展開(kāi)成冪級(jí)數(shù). 解:而(1-z)-1= = 3將函數(shù)f(z)=(z+2)-1在點(diǎn)z=1展開(kāi)成冪級(jí)數(shù). 解:f(z)=(z+2)-1= = 4將函數(shù)f(z)=ez在點(diǎn)z=1展開(kāi)成冪級(jí)數(shù). 解: f(z)=ez f(n)=ez 四、證明題 1證明:1-ei2z=-2isinzeiz 證:eiz=cosz+isinze-iz=cos-isinz eiz-e-iz=2isinz -2isinz=-( eiz-e-i

12、z) = eiz-e-iz -2isinz eiz=( e-iz- eiz) eiz =e0- e2iz=1- e2iz2試用解析函數(shù)的唯一性定理證明等式: cos2z= cos2z-sin2z 證f1(z)=cos2z,則f1(z)復(fù)平面g解析設(shè)f2(z)coszsin2,則f2(z)也在整個(gè)復(fù)平面g解析取e=k為實(shí)數(shù)軸,則e在g內(nèi)有聚點(diǎn).當(dāng)e為實(shí)數(shù)時(shí),知cos2z=cos2z-sin2z,即f1(z)= f2(z)由解析函數(shù)唯一性定理,由以上三條知f1(z)= f2(z) 成立即cos2z= cos2z-sin2z 第6章 解析函數(shù)的羅朗級(jí)數(shù)表示 一、單項(xiàng)選擇題 1函數(shù)f(z)=在點(diǎn)z=2

13、的去心鄰域( d ) 內(nèi)可展成羅朗級(jí)數(shù). (a) 0 (b) 0 (c) 1 (d) 0 2設(shè)點(diǎn)為f(z)的孤立奇點(diǎn),若=c,則點(diǎn)為f(z)的( c ). (a) 本性奇點(diǎn) (b) 極點(diǎn) (c) 可去奇點(diǎn) (d) 解析點(diǎn) 3若點(diǎn)為函數(shù)f(z)的孤立奇點(diǎn),則點(diǎn)為f(z)的極點(diǎn)的充分必要條件是( d ). (a) f(z)=c() (b) f(z)= (c) f(z)=c() (d) f(z)= 4若點(diǎn)為函數(shù)f(z)的孤立奇點(diǎn),則點(diǎn)為f(z)的本性奇點(diǎn)的充要條件是( b ). (a) f(z)= c() (b) f(z)不存在 (c) f(z)=c() (d) f(z)= 二、填空題 1設(shè)為函數(shù)f

14、(z)在點(diǎn)的羅朗級(jí)數(shù),稱(chēng)為該級(jí)數(shù)的主要部分. 2.設(shè)點(diǎn)為函數(shù)f(z)的奇點(diǎn),若f(z)在點(diǎn)的某個(gè) 某個(gè)去心鄰域內(nèi)解析,則稱(chēng)點(diǎn)為f(z)的孤立奇點(diǎn). 3.若f(z)=,則點(diǎn)z=0為f(z)的 0 級(jí)極點(diǎn). 不是極點(diǎn),若f(z)= 則z=0為f(z)的一個(gè)極點(diǎn). 4.若f(z)=(sin)-1,則點(diǎn)z0為f(z)非孤立 奇點(diǎn). 三、計(jì)算題1將函數(shù)f(z)=(z-2)-1在點(diǎn)z=0的去心鄰域展成羅朗級(jí)數(shù).解: f(z)= = - = - 2將函數(shù)f(z)在點(diǎn)的去心鄰域展成羅朗級(jí)數(shù). 解: f(z)= 3試求函數(shù)f(z)=z-3sinz3的有限奇點(diǎn),并判定奇點(diǎn)的類(lèi)別. 解: 解析,無(wú)奇點(diǎn),f(z)的有

15、限奇點(diǎn)為z=0. 并且為3階極點(diǎn). 4試求函數(shù)f(z)=z-1的有限奇點(diǎn),并判定奇點(diǎn)的類(lèi)別. 解: f(z)的m階奇點(diǎn)即的階零點(diǎn),而零點(diǎn)為z=0,z=1,z=-1,且均為1階零點(diǎn)。的有限奇點(diǎn)為z=0,z=1,z=-1且均為1階極點(diǎn). 四、證明題 1設(shè)f(z)=,試證z=0為f(z)的6級(jí)極點(diǎn). 證:要證z=0為f(z)的6級(jí)極點(diǎn),只需證z=0為的6階零點(diǎn)即可.而 =8z3 =8z6 令 則 為的6階零點(diǎn) z=0 為f(z)的6級(jí)極點(diǎn).if we dont do that it will go on and go on. we have to stop it; we need the coura

16、ge to do it.his comments came hours after fifa vice-president jeffrey webb - also in london for the fas celebrations - said he wanted to meet ivory coast international toure to discuss his complaint.cska general director roman babaev says the matter has been exaggerated by the ivorian and the britis

17、h media.blatter, 77, said: it has been decided by the fifa congress that it is a nonsense for racism to be dealt with with fines. you can always find money from somebody to pay them.it is a nonsense to have matches played without spectators because it is against the spirit of football and against th

18、e visiting team. it is all nonsense.we can do something better to fight racism and discrimination.this is one of the villains we have today in our game. but it is only with harsh sanctions that racism and discrimination can be washed out of football.the (lack of) air up there watch mcayman islands-b

19、ased webb, the head of fifas anti-racism taskforce, is in london for the football associations 150th anniversary celebrations and will attend citys premier league match at chelsea on sunday.i am going to be at the match tomorrow and i have asked to meet yaya toure, he told bbc sport.for me its about

20、 how he felt and i would like to speak to him first to find out what his experience was.uefa hasopened disciplinary proceedings against cskafor the racist behaviour of their fans duringcitys 2-1 win.michel platini, president of european footballs governing body, has also ordered an immediate investi

21、gation into the referees actions.cska said they were surprised and disappointed by toures complaint. in a statement the russian side added: we found no racist insults from fans of cska.baumgartner the disappointing news: mission aborted.the supersonic descent could happen as early as sunda.the weath

22、er plays an important role in this mission. starting at the ground, conditions have to be very calm - winds less than 2 mph, with no precipitation or humidity and limited cloud cover. the balloon, with capsule attached, will move through the lower level of the atmosphere (the troposphere) where our

23、day-to-day weather lives. it will climb higher than the tip of mount everest (5.5 miles/8.85 kilometers), drifting even higher than the cruising altitude of commercial airliners (5.6 miles/9.17 kilometers) and into the stratosphere. as he crosses the boundary layer (called the tropopause),e can expe

24、ct a lot of turbulence.the balloon will slowly drift to the edge of space at 120,000 feet ( then, i would assume, he will slowly step out onto something resembling an olympic diving platform.below, the earth becomes the concrete bottom of a swimming pool that he wants to land on, but not too hard. s

25、till, hell be traveling fast, so despite the distance, it will not be like diving into the deep end of a pool. it will be like he is diving into the shallow end.skydiver preps for the big jumpwhen he jumps, he is expected to reach the speed of sound - 690 mph (1,110 kph) - in less than 40 seconds. like hitting

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論