版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1定義:說明:(1)一些最簡(jiǎn)單的數(shù)列或函數(shù)的極限(極限值可以觀察得到)都可以用上面的極限嚴(yán)格定義證明,例如:;(2)在后面求極限時(shí),(1)中提到的簡(jiǎn)單極限作為已知結(jié)果直接運(yùn)用,而不需再用極限嚴(yán)格定義證明。利用導(dǎo)數(shù)的定義求極限這種方法要求熟練的掌握導(dǎo)數(shù)的定義。2極限運(yùn)算法則定理1 已知,都存在,極限值分別為A,B,則下面極限都存在,且有(1)(2)(3)說明:極限號(hào)下面的極限過程是一致的;同時(shí)注意法則成立的條件,當(dāng)條件不滿足時(shí),不能用。.利用極限的四則運(yùn)算法求極限這種方法主要應(yīng)用于求一些簡(jiǎn)單函數(shù)的和、乘、積、商的極限。通常情況下,要使用這些法則,往往需要根據(jù)具體情況先對(duì)函數(shù)做某些恒等變形或化簡(jiǎn)。
2、8.用初等方法變形后,再利用極限運(yùn)算法則求極限例1 解:原式=。注:本題也可以用洛比達(dá)法則。例2 解:原式=。例3 解:原式。3兩個(gè)重要極限(1)(2);說明:不僅要能夠運(yùn)用這兩個(gè)重要極限本身,還應(yīng)能夠熟練運(yùn)用它們的變形形式,例如:,;等等。利用兩個(gè)重要極限求極限例5 解:原式=。注:本題也可以用洛比達(dá)法則。例6 解:原式=。例7 解:原式=。4等價(jià)無窮小定理2 無窮小與有界函數(shù)的乘積仍然是無窮?。礃O限是0)。定理3 當(dāng)時(shí),下列函數(shù)都是無窮?。礃O限是0),且相互等價(jià),即有:。說明:當(dāng)上面每個(gè)函數(shù)中的自變量x換成時(shí)(),仍有上面的等價(jià)關(guān)系成立,例如:當(dāng)時(shí),;。定理4 如果函數(shù)都是時(shí)的無窮小,
3、且,則當(dāng)存在時(shí),也存在且等于,即=。利用等價(jià)無窮小代換(定理4)求極限例9 解:,原式=。例10 解:原式=。注:下面的解法是錯(cuò)誤的:原式=。正如下面例題解法錯(cuò)誤一樣:。例11 解:,所以,原式=。(最后一步用到定理2)五、利用無窮小的性質(zhì)求極限有限個(gè)無窮小的和是無窮小,有界函數(shù)與無窮小乘積是無窮小。用等價(jià)無窮小替換求極限常常行之有效。例 1. 2. 1/215洛比達(dá)法則定理5 假設(shè)當(dāng)自變量x趨近于某一定值(或無窮大)時(shí),函數(shù)和滿足:(1)和的極限都是0或都是無窮大;(2)和都可導(dǎo),且的導(dǎo)數(shù)不為0;(3)存在(或是無窮大);則極限也一定存在,且等于,即=。說明:定理5稱為洛比達(dá)法則,用該法則求
4、極限時(shí),應(yīng)注意條件是否滿足,只要有一條不滿足,洛比達(dá)法則就不能應(yīng)用。特別要注意條件(1)是否滿足,即驗(yàn)證所求極限是否為“”型或“”型;條件(2)一般都滿足,而條件(3)則在求導(dǎo)完畢后可以知道是否滿足。另外,洛比達(dá)法則可以連續(xù)使用,但每次使用之前都需要注意條件。利用洛比達(dá)法則求極限說明:當(dāng)所求極限中的函數(shù)比較復(fù)雜時(shí),也可能用到前面的重要極限、等價(jià)無窮小代換等方法。同時(shí),洛比達(dá)法則還可以連續(xù)使用。例12 (例4)解:原式=。(最后一步用到了重要極限)例13 解:原式=。例14 解:原式=。(連續(xù)用洛比達(dá)法則,最后用重要極限)例15 解:先用等價(jià)無窮小,再用洛必達(dá)法則例18 解:錯(cuò)誤解法:原式=。正
5、確解法:應(yīng)該注意,洛比達(dá)法則并不是總可以用,如下例。例19 解:易見:該極限是“”型,但用洛比達(dá)法則后得到:,此極限不存在,而原來極限卻是存在的。正確做法如下:原式=(分子、分母同時(shí)除以x) =(利用定理1和定理2)6連續(xù)性定理6 一切連續(xù)函數(shù)在其定義去間內(nèi)的點(diǎn)處都連續(xù),即如果是函數(shù)的定義去間內(nèi)的一點(diǎn),則有。利用函數(shù)的連續(xù)性(定理6)求極限例4 解:因?yàn)槭呛瘮?shù)的一個(gè)連續(xù)點(diǎn),所以原式=。7極限存在準(zhǔn)則定理7(準(zhǔn)則1)單調(diào)有界數(shù)列必有極限。四、利用單調(diào)有界準(zhǔn)則求極限首先常用數(shù)學(xué)歸納法討論數(shù)列的單調(diào)性和有界性,再求解方程可求出極限。例1. 設(shè),求極限。定理8(準(zhǔn)則2)已知為三個(gè)數(shù)列,且滿足:(1)(
6、2),則極限一定存在,且極限值也是a ,即。10.夾逼定理利用極限存在準(zhǔn)則求極限例20 已知,求解:易證:數(shù)列單調(diào)遞增,且有界(02),由準(zhǔn)則1極限存在,設(shè)。對(duì)已知的遞推公式兩邊求極限,得:,解得:或(不合題意,舍去)所以。例21 解:易見:因?yàn)?,所以由?zhǔn)則2得:。9.洛必達(dá)法則與等價(jià)無窮小替換結(jié)合法對(duì)于一些函數(shù)求極限問題,洛必達(dá)法則和等價(jià)無窮小結(jié)合運(yùn)用,往往能化簡(jiǎn)運(yùn)算,收到奇效。11.泰勒展開法12.利用定積分的定義求極限法積分本質(zhì)上是和式的極限,所以一些和式的極限問題可以轉(zhuǎn)化為求定積分的問題。 8.利用復(fù)合函數(shù)求極限十、利用級(jí)數(shù)收斂的必要條件求極限級(jí)數(shù)收斂的必要條件是:若級(jí)數(shù)收斂,則,故對(duì)
7、某些極限,可將函數(shù)作為級(jí)數(shù)的一般項(xiàng),只須證明此技術(shù)收斂,便有。例十一、利用冪級(jí)數(shù)的和函數(shù)求極限當(dāng)數(shù)列本身就是某個(gè)級(jí)數(shù)的部分和數(shù)列時(shí),求該數(shù)列的極限就成了求相應(yīng)級(jí)數(shù)的和,此時(shí)??梢暂o助性的構(gòu)造一個(gè)函數(shù)項(xiàng)級(jí)數(shù)(通常為冪級(jí)數(shù),有時(shí)為Fourier級(jí)數(shù))。使得要求的極限恰好是該函數(shù)項(xiàng)級(jí)數(shù)的和函數(shù)在某點(diǎn)的值。例求7等比等差數(shù)列公式應(yīng)用(對(duì)付數(shù)列極限)(q絕對(duì)值符號(hào)要小于1)8各項(xiàng)的拆分相加(來消掉中間的大多數(shù))(對(duì)付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡(jiǎn)函數(shù)9求左右求極限的方式(對(duì)付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時(shí)一樣的,應(yīng)為極限去掉有限項(xiàng)目極限值不變化11 還有個(gè)方法,非常方便的方法就是當(dāng)趨近于無窮大時(shí)候不同函數(shù)趨近于無窮的速度是不一樣的!x的x次方快于x! 快于指數(shù)函數(shù) 快于 冪數(shù)函數(shù) 快于 對(duì)數(shù)函數(shù)(畫圖也能看出速率的快慢)!當(dāng)x趨近無窮的時(shí)候他們的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度貨運(yùn)司機(jī)勞動(dòng)合同模板(含績(jī)效考核)
- 二零二五年度學(xué)校教師學(xué)生國(guó)際交流與合作聘用合同3篇
- 二零二五年度信息技術(shù)產(chǎn)品軟件售后服務(wù)合同書模板2篇
- 2025年度個(gè)人法律咨詢委托書范本4篇
- 二零二五年度廚房電氣設(shè)備安裝與維護(hù)承包協(xié)議4篇
- 2025版實(shí)習(xí)合同模板:實(shí)習(xí)期間解約與補(bǔ)償3篇
- 二零二五版舊機(jī)動(dòng)車交易車輛售后配件供應(yīng)合同3篇
- 2025版實(shí)習(xí)期員工勞動(dòng)合同-實(shí)習(xí)期間合同解除與續(xù)簽3篇
- 珠??萍紝W(xué)院《賈平凹文學(xué)創(chuàng)作研究》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度商業(yè)寫字樓租賃合同樣本
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第十一章運(yùn)動(dòng)技能的練習(xí)
- 蟲洞書簡(jiǎn)全套8本
- 射頻在疼痛治療中的應(yīng)用
- 四年級(jí)數(shù)學(xué)豎式計(jì)算100道文檔
- “新零售”模式下生鮮電商的營(yíng)銷策略研究-以盒馬鮮生為例
- 項(xiàng)痹病辨證施護(hù)
- 職業(yè)安全健康工作總結(jié)(2篇)
- 懷化市數(shù)字經(jīng)濟(jì)產(chǎn)業(yè)發(fā)展概況及未來投資可行性研究報(bào)告
- 07FD02 防空地下室電氣設(shè)備安裝
- 教師高中化學(xué)大單元教學(xué)培訓(xùn)心得體會(huì)
- 彈簧分離問題經(jīng)典題目
評(píng)論
0/150
提交評(píng)論