不等式概念及性質(zhì)知識(shí)點(diǎn)詳解與練習(xí)_3957_第1頁(yè)
不等式概念及性質(zhì)知識(shí)點(diǎn)詳解與練習(xí)_3957_第2頁(yè)
不等式概念及性質(zhì)知識(shí)點(diǎn)詳解與練習(xí)_3957_第3頁(yè)
不等式概念及性質(zhì)知識(shí)點(diǎn)詳解與練習(xí)_3957_第4頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余1頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、名師總結(jié)精品知識(shí)點(diǎn)不等式的概念及性質(zhì)知識(shí)點(diǎn)詳解及練習(xí)一、不等式的概念及列不等式概念不等號(hào)“ ”、“”、“”、“”、“”設(shè)未知數(shù)不等式列不等式步驟列出代數(shù)式表示出不等關(guān)系1、不等式的概念及其分類(lèi)( 1)定義:用“” 、“”、“”、“”及“”等不等號(hào)把代數(shù)式連接起來(lái),表示不等關(guān)系的式子。a-b>0a>b, a-b=0a=b, a-b<0a<b 。(2)分類(lèi):矛盾不等式:不等式只是表示了某種不等關(guān)系,它表示的關(guān)系可能在任何條件下都不成立,這樣的不等式叫矛盾不等式;如 2 3, x2 0 絕對(duì)不等式:它表示的關(guān)系可能在任何條件下都成立,這樣的不等式叫絕對(duì)不等式;條件不等式:在一

2、定條件下才能成立的不等式叫條件不等式。(3)不等號(hào)的類(lèi)型:“”讀作“不等于”,它說(shuō)明兩個(gè)量之間關(guān)系是不等的,但不能明確兩個(gè)量誰(shuí)大誰(shuí)小;“”讀作“大于” ,它表示左邊的數(shù)比右邊的數(shù)大;“”讀作“小于” , 它表示左邊的數(shù)比右邊的數(shù)??;“”讀作“大于或等于” , 它表示左邊的數(shù)不小于右邊的數(shù);“”讀作“小于或等于” , 它表示左邊的數(shù)不大于右邊的數(shù);注意:要正確理解“非負(fù)數(shù)”、“非正數(shù)”、“不大于”、“不小于”等數(shù)學(xué)術(shù)語(yǔ)的含義。(4)常見(jiàn)不等式基本語(yǔ)言的含義:若 x 0,則 x 是正數(shù);若 x 0,則 x 是負(fù)數(shù);若 x 0,則 x 是非負(fù)數(shù);若 x 0,則 x 是非正數(shù);若 x-y 0,則 x

3、大于 y;若 x-y 0,則 x 小于 y;若 x-y 0,則 x 不小于y;若x-y 0,則x 不大于y;若xy 0(或x 0),則x, y同號(hào);若xy 0y(或x 0),則x, y 異號(hào);y(5)等式與不等式的關(guān)系:等式與不等式都用來(lái)表示現(xiàn)實(shí)中的數(shù)量關(guān)系, 等式表示相等關(guān)系, 不等式表示不等關(guān)系, 但不論是等式還是不等式,都是同類(lèi)量比較所得的關(guān)系,不是同類(lèi)量不能比較。2、列不等式:( 1)根據(jù)已知條件列不等式,實(shí)際上就是用不等式表示代數(shù)式間的不等關(guān)系,重點(diǎn)是抓住關(guān)鍵詞,弄清不等關(guān)系。( 2)步驟:正確列出代數(shù)式;正確使用不等號(hào)知識(shí)要點(diǎn)總結(jié)注意問(wèn)題不等式的概念表示不相等關(guān)系的式子1、“不大于

4、”應(yīng)為“”列不等式兩步驟: 正確列出代數(shù)式; 正確使用不等號(hào)2、“不小于”應(yīng)為“”解題方法總結(jié)列不等式和列代數(shù)式以及列方程有相似之處,一般是先設(shè)出未知數(shù),再用代數(shù)式表示出相關(guān)的量,通過(guò)尋找不等關(guān)系列出不等式,審題時(shí)要抓住關(guān)名師總結(jié)精品知識(shí)點(diǎn)鍵詞。如“不超過(guò)” 、“不大于” 、“不小于”等。例 1:列不等式:x 的 2 倍與 y 的差是非正數(shù);x 與 3 的差不小于5x2 y4m 1例 2:已知關(guān)于 x、 y 的方程組2 y,試列出使 x y 成立的關(guān)于 m 的不等式x9二、不等式的解和解集1、相關(guān)概念:不等式的解:使不等式成立的未知數(shù)的值叫做不等式的解;不等式的解集:使不等式成立的未知數(shù)的取值

5、范圍叫做不等式的解的集合,簡(jiǎn)稱(chēng)解集;解不等式:求不等式的解集的過(guò)程叫做解不等式;2、不等式的解和解集的區(qū)別與聯(lián)系:區(qū)別:不等式的解是一些具體數(shù)值,有無(wú)數(shù)個(gè),用符號(hào)表示;不等式的解集是一個(gè)范圍,用不等號(hào)表示。聯(lián)系:不等式的每一個(gè)解都在它的解集的范圍內(nèi)。3、用數(shù)軸表示不等式的解集: x -2表示為: x-2表示為: x 2 表示為:x 2 表示為:特別提示: 用數(shù)軸表示不等式的解集要注意兩點(diǎn):定界點(diǎn): 一般在數(shù)軸上只標(biāo)出原點(diǎn)和界點(diǎn)即可, 定邊界點(diǎn)時(shí)要注意點(diǎn)是實(shí)心還是空心,若邊界點(diǎn)含于集合為實(shí)心點(diǎn),不含于解集為空心點(diǎn);定方向: “小于向左,大于向右”。例 1、表示不等式組的解集如圖所示,則不等式組的

6、解集是_例 2、 x 的解集在數(shù)軸上表示為如圖所示的不等式組,求x 的解集三、不等式的性質(zhì)1 、不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。( 1)不等式基本性質(zhì)有:一個(gè)數(shù)大于另一個(gè)數(shù),則另一個(gè)數(shù)一定小于這個(gè)數(shù);若a>b b<a ( 對(duì)稱(chēng)性 )一個(gè)數(shù)大于另一個(gè)數(shù),另一個(gè)數(shù)大于其它數(shù),則這個(gè)數(shù)一定大于其它數(shù);若 a>b, b>c a>c ( 傳遞性 ) 不等式兩邊都加上 (或減去 )同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變; a>b a+c>b+c (c R) 不等式兩邊都乘以 (或除以 )同一個(gè)正數(shù),不等號(hào)的方向不變; c>0 時(shí), a

7、>b ac>bc 不等式兩邊都乘以 (或除以 )同一個(gè)負(fù)數(shù),不等號(hào)的方向改變;c<0 時(shí), a>b名師總結(jié)精品知識(shí)點(diǎn)ac<bc。特別提示:、在不等式兩邊同乘以(或除以)同一個(gè)數(shù)(或式)時(shí),必須先確定這個(gè)數(shù)的性質(zhì)符號(hào),然后再確定是否改變不等號(hào)的方向;、如果不等式乘以0,那么不等號(hào)改為等號(hào),所以在題目中,要求出乘以的數(shù),那么就要看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不能為0,否則不等式不成立 ;(2 )、運(yùn)算性質(zhì)有: a>b, c>da+c>b+d 。 a>b>0, c>d>0ac>bd 。 a&

8、gt;b>0an >bn (n N, n>1)。a>b>0>(n N, n>1)。應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價(jià)關(guān)系。 一般地, 證明不等式就是從條件出發(fā)施行一系列的推出變換。 解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。2、不等式與等式性質(zhì)的關(guān)系相同不管是等式還是不等式,都可以在它們的兩邊同加(減)一個(gè)數(shù)(整式),所得結(jié)果仍成立。不同在等式兩邊同乘(除以)一個(gè)正(負(fù))數(shù)(整式),等式仍然成立;在不等式兩邊同乘(除以)一個(gè)正數(shù)(整式),不等號(hào)方向不變,在不等式兩邊同乘(除以)一個(gè)負(fù)數(shù)(

9、整式),不等號(hào)方向一定改變。3、不等式性質(zhì)的應(yīng)用:主要有以下三類(lèi)問(wèn)題:(1) 根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。(2) 利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。(3) 利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。2例 1、試判斷4m+4m+5和 2(2m+1) 的大小例 2、若關(guān)于x 的不等式( 1-a ) x 2 可化為 x2, 試確定 a 的取值范圍1- a不等式的概念及性質(zhì)練習(xí)題一、判斷題(正確的打“” ,錯(cuò)誤的打“×” )1、不等式兩邊同時(shí)乘以一個(gè)整數(shù),不等號(hào)方向不變。()2、如果 ab,那么 3 2a 3 2b

10、。()3、如果 a 是有理數(shù),那么8a 5a。()4、如果 ab,那么 a2 b2。()5、如果 a 為有理數(shù),則a a。()6、如果 ab,那么 ac2 bc2 。()7、如果 x,那么 x 8。()8、若 a b,則 a c b c。( )9、 x 0, y0, 則 x0( )y10、若 xy1x)0()0, 則 ( y211、若 ab,c 0, 則 ac2bc20()12、若 xz2yz2 ,則 xy()名師總結(jié)精品知識(shí)點(diǎn)13、若 ab a, 則 b0()14、若 abc, 則 ac()b12,則12a()15、若a二、填空題1、若 ab ,則1 a1 b , 2a 12b 12020a

11、b2時(shí),b時(shí),0、當(dāng) a3、若 x0, 則xyy224、若 ac 2bc 2 ,則3a3b5、實(shí)數(shù) a,b 在數(shù)軸上的位置如圖所示,用“”或“”填空:ab_0,2211, a_ ba b_0, ab_0, a _b ,a_1 (b a) _0b6、若 a b0,則27、用不等式表示“a 的 5 倍與 b 的和不大于8”為 _.8、a 是個(gè)非負(fù)數(shù)可表示為_(kāi).9、若 ba0,則11-ba10、若3a2a,則 a0三、選擇題1、在數(shù)學(xué)表達(dá)式 -3<0; 4x+5>0; x=3; x2+x; x -4; x+2>x+1是不等式的有( )A.2 個(gè)B.3 個(gè)C.4 個(gè)D.5個(gè)2、若 m

12、,則下列各式中正確的是()A m3 3 B 。3m3n C。 3m 3nD。 m 3 1n 3 13、若 a 0,則下列不等關(guān)系錯(cuò)誤的是()A a 5 a7B 。5a 7aC。 5 a7 a D 。 a 5 a 74、下列各題中,結(jié)論正確的是()A 若 a 0,b 0,則 b a 0B 若 a b,則 a b 0C若 a 0, b 0,則 ab 0D若 a b, a 0,則 ba 05、下列變形不正確的是()A 若 a b,則 b aB a b,得 b aC由 2x a,得 x a 2D由 x 2 y,得 x 2y6、有理數(shù) b 滿(mǎn)足 b 3,并且有理數(shù)a 使得 ab 恒成立,則 a 得取值范

13、圍是()A 小于或等于 3 的有理數(shù)B 小于 3 的有理數(shù)C小于或等于 3 的有理數(shù)D 小于 3 的有理數(shù)7、若 a b0,則下列各式中一定成立的是()A a bB ab 0Ca b 0D a b8 、 若 ab , 且 c 0, 那 么在下面 不 等 式 ac b c ac bcabac 2bc2 中成立的個(gè)數(shù)是(cc)A 1B 2C 3D 4名師總結(jié)精品知識(shí)點(diǎn)9、已知 a、b、 c 都是實(shí)數(shù),并且a>b>c,那么下列式子中正確的是()A ab bcB a b b cC a b b cabD cc10、下列由題意列出的不等關(guān)系中, 錯(cuò)誤的是 ()A. a 不是是負(fù)數(shù)可表示為a&g

14、t;0B. x 不大于 3 可表示為 x <3C. m 與 4 的差是非負(fù)數(shù) , 可表示為 x-4 0 D. 代數(shù)式2,可表示為2x +3 必大于 3x-7x +3>3x-7四、解答題1、用不等式表示下列數(shù)量關(guān)系。(1) a 與 b 的和大于 a 的 2 倍。 ( 2) a 的 1 與 b 的 1 的差是負(fù)數(shù)。23(3) x 與 y 之和的絕對(duì)值不大于x 的一半的相反數(shù)( 4)a 與 b 兩數(shù)和的平方不能大于3。(5) 3x 的絕對(duì)值不小于 5。( 6) a 的 6 倍與 3 的差不大于 1。2ab,試比較ac2 與bc2 的大小, ac 與bc的大小。、若3aba且 a 是負(fù)數(shù),求b的取值范圍。、若五、應(yīng)用題1、某校規(guī)定期中考試成績(jī)的40%和期末考試成績(jī)的60%的和

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論