![函數(shù)的單調(diào)性89113_第1頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/9d71148f-bebc-4a12-b924-f08506f1b0a0/9d71148f-bebc-4a12-b924-f08506f1b0a01.gif)
![函數(shù)的單調(diào)性89113_第2頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/9d71148f-bebc-4a12-b924-f08506f1b0a0/9d71148f-bebc-4a12-b924-f08506f1b0a02.gif)
![函數(shù)的單調(diào)性89113_第3頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/9d71148f-bebc-4a12-b924-f08506f1b0a0/9d71148f-bebc-4a12-b924-f08506f1b0a03.gif)
![函數(shù)的單調(diào)性89113_第4頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/9d71148f-bebc-4a12-b924-f08506f1b0a0/9d71148f-bebc-4a12-b924-f08506f1b0a04.gif)
![函數(shù)的單調(diào)性89113_第5頁](http://file2.renrendoc.com/fileroot_temp3/2021-11/14/9d71148f-bebc-4a12-b924-f08506f1b0a0/9d71148f-bebc-4a12-b924-f08506f1b0a05.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、你身邊的高考專家1.1.3 3.1 .1 單調(diào)性與最大(小)值單調(diào)性與最大(?。┲?第一課時第一課時 函數(shù)單調(diào)性的概念函數(shù)單調(diào)性的概念問題提出問題提出 德國有一位著名的心理學(xué)家艾賓浩斯,對人類德國有一位著名的心理學(xué)家艾賓浩斯,對人類的記憶牢固程度進行了有關(guān)研究的記憶牢固程度進行了有關(guān)研究. .他經(jīng)過測試,得他經(jīng)過測試,得到了以下一些數(shù)據(jù):到了以下一些數(shù)據(jù):時間間隔時間間隔 t剛記剛記憶完憶完畢畢20分分鐘后鐘后60分分鐘后鐘后8-9小時小時后后1天天后后2天天后后6天天后后一個一個月后月后記憶量記憶量y(百分比百分比)10058.244.235.833.727.825.421.1以上數(shù)據(jù)表明,
2、記憶量以上數(shù)據(jù)表明,記憶量y y是時間是時間間隔間隔t t的函數(shù)的函數(shù). . 艾賓浩斯根據(jù)這艾賓浩斯根據(jù)這些數(shù)據(jù)描繪出了著名的些數(shù)據(jù)描繪出了著名的“艾賓浩艾賓浩斯遺忘曲線斯遺忘曲線”, ,如圖如圖. .123tyo20406080100思考思考1:1:當時間間隔當時間間隔t t逐漸增逐漸增 大你能看出對應(yīng)的函數(shù)值大你能看出對應(yīng)的函數(shù)值y y有什么變化趨勢?通過這個有什么變化趨勢?通過這個試驗,你打算以后如何對待試驗,你打算以后如何對待剛學(xué)過的知識剛學(xué)過的知識? ?思考思考2:2:“艾賓浩斯遺忘曲線艾賓浩斯遺忘曲線”從左至右是逐漸下降的,對此,從左至右是逐漸下降的,對此,我們?nèi)绾斡脭?shù)學(xué)觀點進行解
3、釋?我們?nèi)绾斡脭?shù)學(xué)觀點進行解釋?tyo20406080100123知識探究(一)知識探究(一)yxo考察下列兩個函數(shù)考察下列兩個函數(shù): :( )f xx2( )(0)f xxx (1 1) ; (2)(2)xyo思考思考1 1: :這兩個函數(shù)的圖象分別是什么?二者有何這兩個函數(shù)的圖象分別是什么?二者有何共同特征?共同特征?思考思考2 2: :如果一個函數(shù)的圖象從左至右逐漸上升,如果一個函數(shù)的圖象從左至右逐漸上升,那么當自變量那么當自變量x x從小到大依次取值時,函數(shù)值從小到大依次取值時,函數(shù)值y y的的變化情況如何?變化情況如何?( )f x12xx1()f x2()f x思考思考3 3: :
4、如圖為函數(shù)如圖為函數(shù) 在定義域在定義域i i內(nèi)某個區(qū)間內(nèi)某個區(qū)間d d上的圖象,對于該上的圖象,對于該區(qū)間上任意兩個自變量區(qū)間上任意兩個自變量x x1 1和和x x2 2,當當 時,時, 與與 的大小的大小關(guān)系如何關(guān)系如何?xyox1x2( )yf x1()f x2()f x思考思考4 4: :我們把具有上述特點的函數(shù)稱為增函數(shù),我們把具有上述特點的函數(shù)稱為增函數(shù),那么怎樣定義那么怎樣定義“函數(shù)函數(shù) 在區(qū)間在區(qū)間d d上是增函數(shù)上是增函數(shù)”?( )f x對于對于函數(shù)函數(shù)定義域定義域i i內(nèi)某個區(qū)間內(nèi)某個區(qū)間d d上的任意兩個自變量上的任意兩個自變量 的值的值,若當,若當 時,都有時,都有 ,
5、,則稱函數(shù)則稱函數(shù) 在區(qū)間在區(qū)間d d上是增函數(shù)上是增函數(shù). . 知識探究(二)知識探究(二)考察下列兩個函數(shù)考察下列兩個函數(shù): :( )f xx 2( )(0)f xxx (1 1) ; (2)(2)xyoxoy思考思考1 1: :這兩個函數(shù)的圖象分別是什么?這兩個函數(shù)的圖象分別是什么?二者有何二者有何 共同特征?共同特征?( )f x思考思考2 2: :我們把具有上述特點的我們把具有上述特點的函數(shù)稱為減函數(shù),那么怎樣定函數(shù)稱為減函數(shù),那么怎樣定義義“函數(shù)函數(shù) 在區(qū)間在區(qū)間d d上是減上是減函數(shù)函數(shù)”?2()f xxyox1x2( )yf x1()f x對于對于函數(shù)函數(shù)定義域定義域i i內(nèi)某
6、個區(qū)間內(nèi)某個區(qū)間d d上的任意兩個自變量上的任意兩個自變量 的值的值,若當,若當 , ,則稱函數(shù)則稱函數(shù) 在區(qū)間在區(qū)間d d上是減函數(shù)上是減函數(shù). . ( )f x12()()fxfx思考思考3:3:對于對于函數(shù)函數(shù)定義域定義域i i內(nèi)某個區(qū)間內(nèi)某個區(qū)間d d上的任意兩上的任意兩個自變量個自變量 的值的值,若當,若當 時,都有時,都有 , ,則函數(shù)則函數(shù) 在區(qū)間在區(qū)間d d上是增函數(shù)還是上是增函數(shù)還是減函數(shù)?減函數(shù)? 12,x x12xx2( )(1)f xx( )f x( )f x思考思考4 4:如果函數(shù)如果函數(shù)y=y=f(xf(x) )在區(qū)間在區(qū)間d d上是增函上是增函數(shù)或減函數(shù),則稱函數(shù)
7、數(shù)或減函數(shù),則稱函數(shù) 在這一區(qū)間具有在這一區(qū)間具有(嚴格的)(嚴格的)單調(diào)性單調(diào)性,區(qū)間,區(qū)間d d叫做函數(shù)叫做函數(shù) 的的單調(diào)區(qū)間單調(diào)區(qū)間. .那么二次函數(shù)在那么二次函數(shù)在r r上具有單調(diào)性嗎?上具有單調(diào)性嗎?函數(shù)函數(shù) 的單調(diào)區(qū)間如何?的單調(diào)區(qū)間如何?理論遷移理論遷移- -5 5- -3 31 13 36o ox xy y( )yf x( )yf x例例1 如圖是定義在閉區(qū)間如圖是定義在閉區(qū)間 -5-5,66上的函數(shù)上的函數(shù) 的圖象,根據(jù)圖象說出的圖象,根據(jù)圖象說出 的單調(diào)區(qū)間,以的單調(diào)區(qū)間,以及在每一單調(diào)區(qū)間上,及在每一單調(diào)區(qū)間上,函數(shù)函數(shù) 是增函數(shù)還是增函數(shù)還是減函數(shù)是減函數(shù). ( )yf
8、 x(0,)1( )xfxx 例例3 3 試確定函數(shù)試確定函數(shù) 在區(qū)間在區(qū)間上的單調(diào)性上的單調(diào)性. ()kpkv為正常數(shù) 例例2 2 物理學(xué)中的玻意耳定律物理學(xué)中的玻意耳定律 告訴我們,對于一定量的氣體,當其體積告訴我們,對于一定量的氣體,當其體積v v 減小時,壓強減小時,壓強p p將增大將增大. . 試用函數(shù)的單調(diào)性試用函數(shù)的單調(diào)性 證明證明. . 小小 結(jié)結(jié)利用定義確定或證明函數(shù)利用定義確定或證明函數(shù)f(xf(x) )在給定的在給定的 區(qū)間區(qū)間d d上的單調(diào)性的一般步驟:上的單調(diào)性的一般步驟: 1.1.取數(shù)取數(shù): :任取任取x x1 1,x x2 2dd,且,且x x1 1x x2 2; 2.2.作差作差: :f(xf(x1 1) )f(xf(x2 2) ); 3.3.變形變形: :通常是因式分解和配方通常是因式分解和配方; ; 4.4.定號定號: :判斷差判
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 特種定制電源行業(yè)的網(wǎng)絡(luò)公關(guān)與社交媒體的聯(lián)動
- 機械原理教育在灌裝機技術(shù)培訓(xùn)中的重要性
- 電商平臺的會員制運營模式研究
- 珠寶拍賣市場的秘密與技巧
- 生態(tài)旅游教育的推廣與實踐
- 機器人產(chǎn)業(yè)中的大數(shù)據(jù)驅(qū)動發(fā)展分析
- 電商行業(yè)的售后服務(wù)優(yōu)化與提升
- 現(xiàn)代家居風(fēng)格與藝術(shù)品的結(jié)合方式
- 用電安全隱患排查的實務(wù)技巧分享
- 2025年度中小企業(yè)信用貸款合同范本及證明書格式
- 二零二五年度電梯安裝工程監(jiān)理合同4篇
- 2025年中國儲備棉管理有限公司招聘筆試參考題庫含答案解析
- 2025年華能新能源股份有限公司招聘筆試參考題庫含答案解析
- 《中國心力衰竭診斷和治療指南(2024)》解讀完整版
- 初中教學(xué)常規(guī)培訓(xùn)
- 《建筑平面圖的繪制》課件
- 醫(yī)院審計科科長述職報告
- 《檔案管理課件》課件
- 2024年度中國共產(chǎn)主義共青團團課課件版
- 2025年中考物理終極押題猜想(新疆卷)(全解全析)
- 1《讀懂彼此的心》(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治五年級下冊
評論
0/150
提交評論