2022年八年級數(shù)學(xué)人教版第十九章一次函數(shù)導(dǎo)學(xué)案_第1頁
2022年八年級數(shù)學(xué)人教版第十九章一次函數(shù)導(dǎo)學(xué)案_第2頁
2022年八年級數(shù)學(xué)人教版第十九章一次函數(shù)導(dǎo)學(xué)案_第3頁
2022年八年級數(shù)學(xué)人教版第十九章一次函數(shù)導(dǎo)學(xué)案_第4頁
2022年八年級數(shù)學(xué)人教版第十九章一次函數(shù)導(dǎo)學(xué)案_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、1 第十九章一次函數(shù)導(dǎo)學(xué)案第 1 課時 變量學(xué)習(xí)目標: 1、了解常量、變量的意義; 2、學(xué)會用含一個變量的代數(shù)式表示另一個變量;學(xué)習(xí)過程:一、問題探究問題一:汽車以60 千米小時的速度勻速行駛,行駛里程為s 千米,行駛時間為t 小時請同學(xué)們根據(jù)題意填寫下表:t/ 時1 2 3 4 5 t s/ 千米在以上這個過程中,變化的量是_不變化的量是_試用含t 的式子表示s: s=_,t的取值范圍是 _ . 這個問題反映了勻速行駛的汽車所行駛的路程_隨行駛時間 _的變化過程問題二:每張電影票的售價為10 元,如果早場售出票150 張,午場售出205 張,晚場售出310張,三場電影的票房收入各多少元?設(shè)一

2、場電影售票x 張,票房收入y 元 ? 請同學(xué)們根據(jù)題意填寫下表:售出票數(shù)(張)早場 150 午場 206 晚場 310 x 收入 y ( 元) 2在以上這個過程中,變化的量是_不變化的量是_試用含x 的式子表示y: y=_ ,x的取值范圍是 . 這個問題反映了票房收入_隨售票張數(shù) _的變化過程問題三:在一根彈簧的下端懸掛重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律如果彈簧原長10cm? ,?每 1kg?重物使彈簧伸長05cm ,設(shè)重物質(zhì)量為mkg,受力后的彈簧長度為l cm. 1請同學(xué)們根據(jù)題意填寫下表:所掛重物( kg)1 2 3 4 5 m 受力后的彈簧長度l(

3、cm )2在以上這個過程中,變化的量是_不變化的量是_試用含m的式子表示l: l=_ ,m的取值范圍是 . 這個問題反映了_隨_的變化過程問題四:要畫一個面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢? 30 cm2呢?怎樣用含有圓面積的式子表示圓半徑r ?請同學(xué)們根據(jù)題意填寫下表:( 用含的式子表示)面積 s(cm2)10 20 30 s 半徑 r(cm) 在以上這個過程中,變化的量是_不變化的量是_試用含s 的式子表示r r=_ ,s 的取值范圍是 . 這個問題反映了_ _ 隨 _ _的變化過程問題五:用10m長的繩子圍成長方形,試改變長方形的長度,觀察長方形的面積怎樣變化

4、記精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 1 頁,共 30 頁 - - - - - - - - -2 錄不同的矩形的長度值,計算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律。設(shè)矩形的長為xm,面積為 m2 . 請同學(xué)們根據(jù)題意填寫下表:長 x(m )4 3 2.5 2 x 另一邊長( m )面積 s(m2)在以上這個過程中,變化的量是_不變化的量是_試用含x 的式子表示s s=_,x的取值范圍是 . 這個問題反映了矩形的_ _ 隨_ _的變化過程二、歸納總結(jié):以上這些問題都反映了不同事物的變化過程,其實現(xiàn)實生活中還有好多類似的問題,在這些變化過程中

5、,有些量的值是按照某種規(guī)律變化的,有些量的數(shù)值是始終不變的。結(jié)論: 在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為 _;在一個變化過程中,我們稱數(shù)值始終不變的量為 _;三、練一練1小軍用50 元錢去買單價是8 元的筆記本,則他剩余的錢q? (元)與他買這種筆記本的本數(shù)x 之間的關(guān)系是() aq=8x bq=8x-50 cq=50-8x dq=8x+50 2甲、乙兩地相距s 千米,某人行完全程所用的時間t (時)與他的速度v(千米 / 時)滿足vt=s ,在這個變化過程中,下列判斷中錯誤的是()as是變量 b t 是變量 c v 是變量 d s是常量3在一個變化過程中,_的量是變量,?_的量是常量4

6、某種報紙的價格是每份0.4 元, 買 x 份報紙的總價為y 元, 先填寫下表 , 再用含 x 的式子表示y份數(shù) / 份1 2 3 4 5 6 7 100 價錢 / 元 x與 y 之間的關(guān)系是y=_, 在這個變化過程中, 常量 _, 變量是 _5長方形相鄰兩邊長分別為x、?y?,面積為 30?,?則用含 x?的式子表示y?為:y=_ ,則這個問題中,_常量; _是變量6寫出下列問題中的關(guān)系式,并指出其中的變量和常量(1)用 20cm的鐵絲所圍的長方形的長x( cm)與面積s(cm2)的關(guān)系(2)直角三角形中一個銳角 與另一個銳角之間的關(guān)系(3)一盛滿 30 噸水的水箱,每小時流出0.5 噸水,試

7、用流水時間t? (小時)表示水箱中的剩水量 y(噸)精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 2 頁,共 30 頁 - - - - - - - - -3 第 2 課時函數(shù)知識目標: 1、理解函數(shù)的概念,能準確識別出函數(shù)關(guān)系中的自變量和函數(shù)2、會用變化的量描述事物導(dǎo)學(xué)過程一、憶一憶問題一:汽車以60 千米小時的速度勻速行駛,行駛里程為s 千米,行駛時間為t 小時請同學(xué)們根據(jù)題意填寫下表:t/ 時1 2 3 4 5 t s/ 千米在以上這個過程中,變化的量是_不變化的量是_試用含t 的式子表示s: s=_,t的取值范圍是 _ . 這個問題反映了勻速

8、行駛的汽車所行駛的路程_隨行駛時間 _的變化過程問題二:每張電影票的售價為10 元,如果早場售出票150 張,午場售出205 張,晚場售出310張,三場電影的票房收入各多少元?設(shè)一場電影售票x 張,票房收入y 元 ? 請同學(xué)們根據(jù)題意填寫下表:售出票數(shù)(張)早場 150 午場 206 晚場 310 x 收入 y ( 元) 2在以上這個過程中,變化的量是_不變化的量是_試用含x 的式子表示y: y=_ ,x的取值范圍是 . 這個問題反映了票房收入_隨售票張數(shù) _的變化過程二、想一想在上面兩個問題中是否各有兩個變量,同一個問題中的變量之間有什么聯(lián)系?結(jié)論:三、探究一些用圖或表格表達的問題中,也能看

9、到兩個變量之間有上面的關(guān)系。(1) 下面是某人體檢時的心電圖,其中橫坐標x 表示時間, 縱坐標 y 表示心臟部位的生物電流(2)小明在14 歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?周歲1 2 3 4 5 6 7 8 9 10 11 12 13 體重( kg)9.3 11.8 13.5 15.4 16.7 18.0 19.6 21.5 23.2 25 27.6 30.2 32.5 精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 3 頁,共 30 頁 - - - - - - - - -4 一般地,在

10、一個變化過程中,如果有兩個變量x 與 y,并且對于 x 的每一個值,y 都有唯一確定的值與其對應(yīng), 那么我們就說 x 是自變量,y是 x 的函數(shù),如果當 x=a 時 y=b, 那么 b 叫做當自變量的值為a 時的函數(shù)值四、練一練1、指出上面題目中的自變量、函數(shù)及函數(shù)值2、一輛汽車的油箱中現(xiàn)有汽油50l,如果不再加油,那么油箱中的油量y(單位: l)隨行駛里程 x(單位: km)的增加而減少,平均耗油量為0.1l/km 。(1)寫出表示y 與 x 的函數(shù)關(guān)系式 . (2)指出自變量x 的取值范圍 . (3)汽車行駛200km 時,油箱中還有多少汽油?像 y=50-0.1x 、y=10 x這樣,用

11、關(guān)于自變量的式子表示函數(shù)與自變量之間關(guān)系,是描述函數(shù)的常用方法,這種式子叫做函數(shù)的解析式,函數(shù)有三種表示方法即表格、圖像、解析式。五、綜合訓(xùn)練:1、寫出下列各問題中所滿足的關(guān)系式,并指出各個關(guān)系式中變量、常量、函數(shù)、自變量,給定自變量一個值求此時函數(shù)值(1)用總長為60m 的籬笆圍成矩形場地,求矩形的面積s(m2)與一邊長x(m) 之間的關(guān)系式;(2)購買單價是0.4 元的鉛筆,總金額y(元)與購買的鉛筆的數(shù)量n(支)的關(guān)系;(3)運動員在4000m 一圈的跑道上訓(xùn)練,他跑一圈所用的時間t(s)與跑步的速度v(m/s)的關(guān)系;(4)銀行規(guī)定:五年期存款的年利率為2.79%,則某人存入x 元本金

12、與所得的本息和y(元)之間的關(guān)系。2、教材 74 頁練習(xí)六:反思精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 4 頁,共 30 頁 - - - - - - - - -5 第 3 課時函數(shù)的圖象學(xué)習(xí)目標1、理解函數(shù)圖象的概念2、會列表、描點、連線,畫出簡單函數(shù)的圖象導(dǎo)學(xué)過程一、學(xué)一學(xué)【自學(xué)指導(dǎo)】:請同學(xué)們閱讀教材p75-p76 思考以上內(nèi)容,并思考一下問題:a) 什么是函數(shù)圖像? b) 如何作函數(shù)圖像?具體步驟有哪些?c) 如何判定一個圖像是函數(shù)圖像,你判斷的依據(jù)是什么? 專項訓(xùn)練畫出)0(6xxy的函數(shù)圖象。小結(jié):畫函數(shù)圖象的方法:二、讀一讀函數(shù)的

13、三種表示方法為圖像、表格、解析式,閱讀教材79 頁-81頁內(nèi)容結(jié)合實例理解各種表示方法的特點。1用解析法表示函數(shù)關(guān)系優(yōu)點:簡單明了。能從解析式清楚看到兩個變量之間的全部相依關(guān)系,并且適合進行理論分析和推導(dǎo)計算。缺點:在求對應(yīng)值時,有時要做較復(fù)雜的計算。2用列表表示函數(shù)關(guān)系優(yōu)點:對于表中自變量的每一個值,可以不通過計算,直接把函數(shù)值找到,查詢時很方便。缺點:表中不能把所有的自變量與函數(shù)對應(yīng)值全部列出,而且從表中看不出變量間的對應(yīng)規(guī)律。3用圖象法表示函數(shù)關(guān)系優(yōu)點 : 形象直觀,可以形象地反映出函數(shù)關(guān)系變化的趨勢和某些性質(zhì),把抽象的函數(shù)概念形象化。缺點 : 從自變量的值常常難以找到對應(yīng)的函數(shù)的準確值

14、。三、練一練精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 5 頁,共 30 頁 - - - - - - - - -6 2、等腰 abc的周長為10cm ,底邊 bc的長為 ycm, 腰 ab的長為 xcm. (1)寫出 y 關(guān)于 x 的函數(shù)關(guān)系式(2)求 x 的取值范圍(3)畫出函數(shù)的圖象3 畫出函數(shù)y21x2的圖象x 。32 1 0 1 2 3 。 。 。y 。由此,我們得到一系列的有序?qū)崝?shù)對:。,(),(),(),(),(),(),(),。(2)在直角坐標系中描出這些有序?qū)崝?shù)對的對應(yīng)點3、矩形的周長是8cm,設(shè)一邊長為x cm,另一邊長為y c

15、m.(1)求 y 關(guān)于 x 的函數(shù)關(guān)系式,并寫出自變量x 的取值范圍;(2)在給出的坐標系中,作出函數(shù)圖像。(第 1 題)精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 6 頁,共 30 頁 - - - - - - - - -t(分)s(米)4002510oy/千米x/分21第 4 課時函數(shù)圖像學(xué)習(xí)目標:會觀察函數(shù)圖象,從函數(shù)圖像中獲取信息,解決問題。學(xué)習(xí)過程:一、做一做1、如圖一,是北京春季某一天的氣溫隨時間t 變化的圖象,看圖回答:(1)氣溫最高是 _,在 _時,氣溫最低是_,在 _時;(2)12 時的氣溫是 _, 20

16、 時的氣溫是 _;(3)氣溫為 -2的是在 _時;(4)氣溫不斷下降的時間是在_;(5)氣溫持續(xù)不變的時間是在_。2、小明的爺爺吃過晚飯后,出門散步,再報亭看了一會兒報紙才回家,小明繪制了爺爺離家的路程s(米)與外出的時間t(分)之間的關(guān)系圖(圖二)(1)報亭離爺爺家_米;(2)爺爺在報亭看了_分鐘報紙;(3)爺爺走去報亭的平均速度是_米分。3、圖三反映的過程是:小明從家去菜地澆水,又去玉米地鋤地,然后回家, 。其中 x 表示時間,y 表示小明離他家的距離,小明家、菜地、玉米地在同一條直線上。根據(jù)圖像回答下列問題:(1)菜地離小明家多遠?小明家到菜地用了多少時間?(2)小明給菜地澆水用了多少時

17、間?(3)菜地離玉米地多遠?小明從菜地到玉米地用了多少時間?(4)小明給玉米地除草用了多少時間?(5)玉米地離小明家多遠?小明從玉米地回家的圖三平均速度是多少?4、一枝蠟燭長20 厘米,點燃后每小時燃燒掉5 厘米,則下列3 幅圖象中能大致刻畫出這枝蠟燭點燃后剩下的長度h(厘米)與點燃時間t 之間的函數(shù)關(guān)系的是() . 精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 7 頁,共 30 頁 - - - - - - - - -8 y/千米x/時o45301815141312111095、圖中的折線表示一騎車人離家的距離y 與時間 x 的關(guān)系。騎車人9:00

18、 離家, 15:00 回家,請你根據(jù)這個折線圖回答下列問題:(1)這個人什么時間離家最遠?這時他離家多遠?(2)何時他開始第一次休息?休息多長時間?這時他離家多遠?(3)11:0012:30 他騎了多少千米?(4)他再 9:0010:30 和 10: 301230 的平均速 度 各是多少?(5)他返家時的平均速度是多少?(6)14:00 時他離家多遠?何時他距家10 千米?6、王教授和孫子小強經(jīng)常一起進行早鍛煉,主要活動是爬山有一天,小強讓爺爺先上,然后追趕爺爺圖中兩條線段分別表示小強和爺爺離開山腳的距離(米)與爬山所用時間(分)的關(guān)系(從小強開始爬山時計時),看圖回答下列問題:(1)小強讓爺

19、爺先上多少米?(2)山頂高多少米?誰先爬上山頂?(3)小強用多少時間追上爺爺?(4)誰的速度大,大多少?7、畫出函數(shù)yx2 的圖像從圖像上觀察當x0 與 x0、y 與 x 的變化規(guī)律怎樣?圖 17.2.6精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 8 頁,共 30 頁 - - - - - - - - -9 第 5 課時19.2.1 正比例函數(shù)學(xué)習(xí)目標:1、理解正比例函數(shù)的概念2、會畫正比例函數(shù)的圖像,理解正比例函數(shù)的性質(zhì)。學(xué)習(xí)過程:一、憶一憶按下列要求寫出解析式(1)一本筆記本的單價為2 元,現(xiàn)購買x 本與付費y 元的關(guān)系式為 _;(2)若正方形

20、的周長為p,邊長為a,那么邊長a 與周長 p 之間的關(guān)系式為_;(3)一輛汽車的速度為60 km / h ,則行使路程s與行使時間t 之間的關(guān)系式為_;(4)圓的半徑為r,則圓的周長c 與半徑 r 之間的關(guān)系式為_。二、議一議上面寫出來的解析式有什么特點?總結(jié):一般地,形如kxy(k 是常數(shù), k0) 的函數(shù),叫做正比例函數(shù),其中k 叫做比例系數(shù)。專項練習(xí): 1、下列函數(shù)鐘,那些是正比例函數(shù)?_(1)xy4(2)13xy(3)1y(4)xy8(5)tv5(6)013x(7)xy2( 8))81(82xxxy2、關(guān)于 x 的函數(shù)xmy) 1(是正比例函數(shù),則m_ 三學(xué)一學(xué)畫出下列正比例函數(shù)( 1

21、)xy2(2)xy3比較上面兩個圖像,填寫你發(fā)現(xiàn)的規(guī)律:(1)兩個圖像都是經(jīng)過原點的_,(2)函數(shù)xy2的圖像經(jīng)過第_象限, 從左到右 _, 即 y 隨 x 的增大而 _;精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 9 頁,共 30 頁 - - - - - - - - -10 (3)函數(shù)xy3的圖像經(jīng)過第_象限,從左到右_,即y 隨x 的增大而_;總結(jié): 正比例函數(shù)的解析式為_ 0k0k相同點圖像所在象限圖像大致形狀增減性三、鞏固練習(xí):1、關(guān)于函數(shù)xy31,下列結(jié)論中,正確的是()a、函數(shù)圖像經(jīng)過點(1,3)b、函數(shù)圖像經(jīng)過二、四象限c、y 隨

22、x 的增大而增大d、不論 x 為何值,總有y0 2、已知正比例函數(shù))0(kkxy的圖像過第二、四象限,則()a、y 隨 x 的增大而增大b、y 隨 x 的增大而減小c、當0 x時, y 隨 x 的增大而增大;當0 x時, y 隨 x 的增大而減少;d、不論 x 如何變化, y 不變。3、當0 x時,函數(shù)xy的圖像在第()象限。a、一、三b、二、四c、二d、三4、函數(shù)kxy的圖像經(jīng)過點p(-1,3)則 k 的值為()a、3 b、 3 c、31d、315、若a(1,m)在函數(shù)xy2的圖像上,則m=_,則點a 關(guān)于 y 軸對稱點坐標是_;6、若b(m,6)在函數(shù)xy3的圖像上,則m=_,則點a 關(guān)于

23、x 軸對稱點坐標是_;7、y 與 x 成正比例,當x=3 時,1y,則 y 關(guān)于 x 的函數(shù)關(guān)系式是_ 8、函數(shù)xy5的圖像在第 _象限,經(jīng)過點(0,_)與點( 1,_), y 隨 x 的增大而 _ 9、 一個函數(shù)的圖像是經(jīng)過原點的直線,并且這條直線經(jīng)過點(1, -3),求這個函數(shù)解析式。10、在函數(shù)y=2x 的自變量中任意取兩個點x1,x2, 若 x1x2, 則對應(yīng)的函數(shù)值y1與 y2的大小關(guān)系是 y1_y2. 精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 10 頁,共 30 頁 - - - - - - - - -11 第 6課時一次函數(shù)(一)學(xué)

24、習(xí)目標:理解一次函數(shù)的概念學(xué)習(xí)過程:一、憶一憶根據(jù)題意寫出下列函數(shù)的解析式(1)有人發(fā)現(xiàn),在2025時蟋蟀每分鳴叫次數(shù)c 與溫度 t (單位:)有關(guān),即c 的值約是 t 的 7 倍與 35 的差; _ (2)一種計算成年人標準體重g(單位:千克)的方法是,以厘米為單位量出身高值h,再減常數(shù) 105,所得的差是g的值; _ (3)某城市的市內(nèi)電話的月收費為y(單位:元)包括:月租22 元,撥打電話x 分的計時費(按 0.1 元 /分收取); _ (4)把一個長10cm、寬 5cm 的長方形的長減少xcm,寬不變, 長方形的面積y(單位: cm2)隨 x 的值而變化。_ 二、議一議:上面所列解析式

25、與正比例函數(shù)有什么異同?歸納:一般地,形如bkxy(k,b 是常數(shù),0k)的函數(shù),叫做一次函數(shù),特別地,當0b時,bkxy即kxy,即正比例函數(shù)是一種特殊的一次函數(shù)。三、專項練習(xí):1、 下列函數(shù)中,是一次函數(shù)的有_,是正比例函數(shù)的有_ (1)xy8(2)xy8(3)652xy(4)15.0 xy(5)xy(6))3(2 xy(7)xy342、若函數(shù)9) 3(2bxby是正比例函數(shù),則b = _ 3、在一次函數(shù)53xy中, k =_ ,b =_ 4、若函數(shù)mxmy2)3(是一次函數(shù),則m_ 5、在一次函數(shù)32xy中,當3x時,y_;當x_時,5y。6、下列說法正確的是()a、bkxy是一次函數(shù)b

26、、一次函數(shù)是正比例函數(shù)c、正比例函數(shù)是一次函數(shù)d、不是正比例函數(shù)就一定不是一次函數(shù)精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 11 頁,共 30 頁 - - - - - - - - -12 7、倉庫內(nèi)原有粉筆400 盒,如果每個星期領(lǐng)出36 盒,則倉庫內(nèi)余下的粉筆盒數(shù)q 與星期數(shù)t之間的函數(shù)關(guān)系式是_,它是 _函數(shù)。8、今年植樹節(jié),同學(xué)們中的樹苗高約1.80 米。據(jù)介紹,這種樹苗在10 年內(nèi)平均每年長高0.35米,則樹高y 與年數(shù) x 之間的函數(shù)關(guān)系式是_,它是 _函數(shù),同學(xué)們在3年之后畢業(yè),則這些樹高_米。9、隨著海拔高度的升高,大氣壓下降,空

27、氣的含氧量也隨之下降,已知含氧量y 與大氣壓強x成正比例,當x=36 時, y=108,請寫出y 與 x 的函數(shù)解析式 _,這個函數(shù)圖像在第_象限,同時經(jīng)過點(0,_)與點( 1,_)10、已知函數(shù)y=(2-m)x+2m-3. 求當 m為何值時 , (1)此函數(shù)為一次函數(shù)? (2)此函數(shù)為正比例函數(shù)? 11、一個小球由靜止開始在一個斜坡向下滾動,其速度每秒增加2 米。(1)求小球速度v 隨時間 t 變化的函數(shù)關(guān)系式,它是一次函數(shù)嗎?(2) 求第 2.5 秒時小球的速度?12. 一種移動通訊服務(wù)的收費標準為:每月基本服務(wù)費為30 元,每月免費通話時間為120 分,以后每分收費0.4 元。(1)寫

28、出每月話費y 元與通話時間x(x120)的函數(shù)關(guān)系式;(2)分別求每月通話時間為100 分, 200 分的話費。思考題:某種氣體在0時的體積為100l,溫度每升高1,它的體積增加0.37l 。(1)寫出氣體體積v(l)與溫度t( ) 之間的函數(shù)解析式;(2)求當溫度為30時氣體的體積。(3)當氣體的體積為107.4l 時,溫度為多少攝氏度?精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 12 頁,共 30 頁 - - - - - - - - -13 第 7 課時一次函數(shù)(二)學(xué)習(xí)目標:1、掌握一次函數(shù)圖像及性質(zhì),2、了解bkxy中的 k,b 對函數(shù)圖

29、像的影響學(xué)習(xí)過程:一、 學(xué)一學(xué)(一)正比例函數(shù)與一次函數(shù)練習(xí)與區(qū))在同一個直角坐標系中畫出函數(shù)xy2,32xy,32xy的圖像-2 -1 0 1 2 y=2x y=2x+3 y=2x-3 觀察這三個圖像,這三個函數(shù)圖像形狀都是_,并且傾斜度 _。函數(shù)xy2的圖像經(jīng)過原點,函數(shù)32xy與 y 軸交于點 _,即它可以看作由直精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 13 頁,共 30 頁 - - - - - - - - -14 線xy2向_平移 _個單位長度得到;同樣的,函數(shù)32xy與 y 軸交于點_,即它可以看作由直線xy2向_平移 _個單位長度

30、得到。 猜想: 一次函數(shù)bkxy的圖像是一條 _,當0b時,它是由kxy向 _平移 _個單位長度得到;當0b時,它是由kxy向_平移 _個單位長度得到。專項練習(xí):1、 在 同 一 個 直 角 坐 標 系 中 , 把 直 線xy2向 _ 平 移 _ 個 單 位 就 得 到32xy的圖像;若向_平移 _個單位就得到52xy的圖像。2、 ( 1)將直線1xy向下平移2 個單位,可得直線_;( 2)將直線321xy向_平移 _個單位可得直線221xy。二、一次函數(shù)圖像和性質(zhì)分別畫出下列函數(shù)的圖像( 1)1xy(2)12xy(3)1xy(4)12xy 觀察上面四個圖像,(1)1xy經(jīng)過 _象限; y 隨

31、 x 的增大而 _,函數(shù)的圖像從左到右_;( 2)12xy經(jīng)過 _象限; y 隨 x 的增大而 _,函數(shù)的圖像從左到右_;(3)1xy經(jīng)過 _象限; y 隨 x 的增大而 _,函精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 14 頁,共 30 頁 - - - - - - - - -15 dcba數(shù)的圖像從左到右_;( 4)12xy經(jīng)過 _象限; y 隨 x 的增大而 _,函數(shù)的圖像從左到右_。1、由此可以得到直線)0(kbkxy中, k ,b 的取值決定直線的位置:(1)0,0bk直線經(jīng)過 _象限;(2)0,0bk直線經(jīng)過 _象限;(3)0,0bk

32、直線經(jīng)過 _象限;(4)0,0bk直線經(jīng)過 _象限;2、一次函數(shù)的性質(zhì):(1)當0k時, y 隨 x 的增大而 _,這時函數(shù)的圖像從左到右_;(2)當0k時, y 隨 x 的增大而 _,這時函數(shù)的圖像從左到右_;專項訓(xùn)練1、一次函數(shù)52xy的圖像不經(jīng)過()a、第一象限b、第二象限c、 第三想象限d、 第四象限2、已知直線bkxy不經(jīng)過第三象限,也不經(jīng)過原點,則下列結(jié)論正確的是( ) a、0, 0bkb、0,0bkc、0,0bkd、0,0bk3、下列函數(shù)中,y 隨 x 的增大而增大的是()a、xy3b、12xyc、103xyd、12xy4、對于一次函數(shù)kxky)63(,函數(shù)值y 隨 x 的增大而

33、減小,則k 的取值范圍是()a、0kb、2kc、2kd、02k5、一次函數(shù)13xy的圖像一定經(jīng)過()a、( 3,5)b、( -2,3)c、( 2,7)d、( 4、10)6、已知正比例函數(shù))0(kkxy的函數(shù)值y 隨 x 的增大而增大,則一次函數(shù)kkxy的圖像大致是()精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 15 頁,共 30 頁 - - - - - - - - -16 7、一次函數(shù)bkxy的圖像如圖所示,則k_, b_,y 隨 x 的增大而 _ 8、一次函數(shù)2xy的圖像經(jīng)過 _象限,y 隨 x 的增大而 _ 9、已知點( -1, a)、( 2

34、,b)在直線83xy上,則 a,b 的大小關(guān)系是_ 10、直線32xy與 x 軸交點坐標為_;與y 軸交點坐標_;圖像經(jīng)過_象限, y 隨 x 的增大而 _,圖像與坐標軸所圍成的三角形的面積是_ 11、已知一次函數(shù))0(kbkxy的圖像經(jīng)過點(0,1),且 y 隨 x 的增大而增大,請你寫出一個符合上述條件的函數(shù)關(guān)系式_ 12、已知一次函數(shù)圖像(1)不經(jīng)過第二象限, (2)經(jīng)過點 (2,-5),請寫出一個同時滿足(1)和( 2)這兩個條件的函數(shù)關(guān)系式:_ 13y=3x 與 y=3x-3 的圖象在同一坐標系中位置關(guān)系是()a相交 b互相垂直 c 平行 d無法確定14 在函數(shù) y=kx+3 中,

35、當 k 取不同的非零實數(shù)時, 就得到不同的直線, 那么這些直線必定( ) a 、交于同一個點 b、互相平行 c、有無數(shù)個不同的交點 d、交點的個數(shù)與k 的具體取值有關(guān)15函數(shù) y=3x+b, 當 b 取一系列不同的數(shù)值時, 它們圖象的共同點是( ) a 、交于同一個點 b、互相平行c有無數(shù)個不同的交點 d、交點個數(shù)的與b的具體取值有關(guān)精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 16 頁,共 30 頁 - - - - - - - - -17 第 8課時一次函數(shù)(三)學(xué)習(xí)目標:學(xué)會運用待定系數(shù)法和數(shù)形結(jié)合思想求一次函數(shù)解析式學(xué)習(xí)過程:一、學(xué)一學(xué)已知一

36、次函數(shù)的圖像經(jīng)過點(3,5)與( 2, 3),求這個一次函數(shù)的解析式。分析: 求一次函數(shù)bkxy的解析式,關(guān)鍵是求出k,b 的值,從已知條件代入一次函數(shù)解析式可以列出關(guān)于k,b 的二元一次方程組,并求出k, b。解:一 次函數(shù)bkxy經(jīng)過點( 3,5)與( 2, 3),可得:_解得_bk一次函數(shù)的解析式為_ 像例 1 這樣先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法,叫做待定系數(shù)法 。二、專項練習(xí)1、已知一次函數(shù)2kxy,當 x = 5 時, y = 4,( 1)求這個一次函數(shù)。(2)求當2x時,函數(shù) y 的值。2、已知直線bkxy經(jīng)過點( 9,0)和點( 2

37、4,20),求這條直線的函數(shù)解析式。3、已知彈簧的長度y(厘米)在一定的限度內(nèi)是所掛重物質(zhì)量x(千克)的一次函數(shù)現(xiàn)已測得不掛重物時彈簧的長度是6 厘米,掛4 千克質(zhì)量的重物時,彈簧的長度是7.2 厘米求這個一次函數(shù)的關(guān)系式精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 17 頁,共 30 頁 - - - - - - - - -18 -32oyx-412-1oyx4、已知一次函數(shù)的圖象如圖所示,求出它的函數(shù)關(guān)系式5、已知一次函數(shù)的圖象如圖所示,求出它的函數(shù)關(guān)系式6、地表以下巖層的溫度t()隨著所處的深度h(千米)的變化而變化,t 與 h 之間在一定范圍

38、內(nèi)近似地成一次函數(shù)關(guān)系。深度(千米)。2 4 6 。溫度 ()。90 160 300 。(1)根據(jù)上表,求t()與 h(千米)之間的函數(shù)關(guān)系式;(2)求當巖層溫度達到1700時,巖層所處的深度為多少千米?7、為了學(xué)生的身體健康,學(xué)校課桌、凳的高度都是按一定的關(guān)系科學(xué)設(shè)計的小明對學(xué)校所添置的一批課桌、凳進行觀察研究,發(fā)現(xiàn)它們可以根據(jù)人的身長調(diào)節(jié)高度于是,他測量了一套課桌、凳上相對應(yīng)的四檔高度,得到如下數(shù)據(jù):(1)小明經(jīng)過對數(shù)據(jù)探究,發(fā)現(xiàn):桌高y 是凳高 x 的一次函數(shù),請你求出這個一次函數(shù)的關(guān)精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 18 頁,共

39、 30 頁 - - - - - - - - -19 y(元)x(噸)6.33.685y(元)x(小時)9060403001020y(元)x(kg )1054030系式(不要求寫出x 的取值范圍);(2) 小明回家后, 測量了家里的寫字臺和凳子,寫字臺的高度為77cm , 凳子的高度為43.5cm ,請你判斷它們是否配套?說明理由三、分段函數(shù)1、某自來水公司為了鼓勵市民節(jié)約用水,采取分段收費標準。居民每月應(yīng)交水費y(元)是用水量 x(噸)的函數(shù),其圖象如圖所示:(1)分別寫出50 x和5x時, y 與 x 的函數(shù)解析式;(2)若某用戶居民該月用水3.5 噸,問應(yīng)交水費多少元?若該月交水費9 元,

40、則用水多少噸?2、某市推出電腦上網(wǎng)包月制,每月收費y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示:(1)當30 x時,求 y 與 x 之間的函數(shù)關(guān)系式;(2)若小李 4 月份上網(wǎng)20 小時,他應(yīng)付多少元的上網(wǎng)費用?(3)若小李 5 月份上網(wǎng)費用為75 元,則他在該月分的上網(wǎng)時間是多少?3、某運輸公司規(guī)定每名旅客行李托運費與所托運行李質(zhì)量之間的關(guān)系式如圖所示,請根據(jù)圖像回答下列問題:(1)由圖像可知,行李質(zhì)量只要不超過_kg,就可以免費攜帶。如果超過了規(guī)定的質(zhì)量,則每超過10kg,要付費 _元。(2)若旅客攜帶的行李質(zhì)量為x(kg),所付的行李費是y(元),請寫出y(元)隨x( kg)變化的關(guān)系

41、式。(3)若王先生攜帶行李50kg, 他共要付行李費多少元?精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 19 頁,共 30 頁 - - - - - - - - -20 四、綜合檢測1、a(1, 4), b(2,m), c(6, 1)在同一條直線上,求m 的值。2、已知一次函數(shù)的圖像經(jīng)過點a(2, 2)和點 b( 2, 4)(1)求 ab 的函數(shù)解析式;(2)求圖像與x 軸、 y 軸的交點坐標c、d,并求出直線ab 與坐標軸所圍成的面積;(3)如果點m(a,21)和 n( 4,b)在直線 ab 上,求 a,b 的值。3、大拇指與小拇指盡量張開時,兩

42、指尖的距離稱為指距。某研究表明,一般人的身高h 時指距d 的一次函數(shù),下表中是測得的指距與身高的一組數(shù)據(jù):指距d( cm)20 21 22 23 身高h( cm)160 169 178 187 (1)求出 h 與 d 之間的函數(shù)關(guān)系式(2)某人身高為196cm,則一般情況下他的指距應(yīng)為多少?精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 20 頁,共 30 頁 - - - - - - - - -21 第 9 課時19.2.1 一次函數(shù)與一元一次方程學(xué)習(xí)目標:1解關(guān)于 x 的方程 kx+b=0 可以轉(zhuǎn)化為:已知函數(shù)y=kx+b 的函數(shù)值為 0,?求相應(yīng)

43、的自變量的值從圖象上看,相當于已知直線y=kx+b,確定它與 x?軸的交點的橫坐標2在直角坐標系中, 以方程 kx-y+b=0?的解為坐標的點組成的圖象就是一次函數(shù) y=kx+b 的圖象導(dǎo)學(xué)過程:一、學(xué)一學(xué)若直線 y=kx+6 與兩坐標軸所圍成的三角形面積是24,求常數(shù) k 的值是多少?分析:(1)一次函數(shù)的圖象與兩條坐標軸圍成的圖形是直角三角形,?兩條直角邊的長分別是圖象與x 軸的交點的橫坐標的絕對值和與y 軸的交點的縱坐標的絕對值(2)確定圖象與兩條坐標軸的交點坐標可以通過令x=0 和 y=0 解方程求得解:設(shè)直線 y=kx+6 與 x 軸和 y 軸分別交于點 a、b令 y=0 得 x=-

44、6k;令 x=0 得 y=6a(-6k,0)、b(0,6)oa=|6k|、oa=6=6 s=12oaob=12|-6k|6=24 k= 43k=43二、專項練習(xí)1直線 y=3x+9 與 x 軸的交點是()a(0,-3)b(-3,0)c(0,3)d(0,-3)2直線 y=kx+3 與 x 軸的交點是( 1,0),則 k 的值是()a3 b2 c-2 d-3 3已知直線 y=kx+b 與直線 y=3x-1 交于 y 軸同一點,則 b 的值是()a1 b-1 c13d-134、根據(jù)下列圖象,你能說出哪些一元一次方程的解?并直接寫出相應(yīng)方程的解?x y y=5x o x y y=x+2 o 2 -2

45、x y y=-3x+6 o 2 x y y=x-1 o 1 -1 精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 21 頁,共 30 頁 - - - - - - - - -22 5已知直線 abx 軸,且點 a 的坐標是( -1,1),則直線 y=x 與直線 ab 的交點是()a(1,1)b(-1,-1)c(1,-1)d(-1,1)6直線 y=3x+6 與 x 軸的交點的橫坐標x 的值是方程 2x+a=0 的解,則 a?的值是_7已知直線 y=2x+8 與 x 軸和 y 軸的交點的坐標分別是 _、_?與兩條坐標軸圍成的三角形的面積是_8已知關(guān)于 x

46、的方程 mx+n=0 的解是 x=-2,則直線 y=mx+n 與 x?軸的交點坐標是_9方程 3x+2=8 的解是 _,則函數(shù) y=3x+2 在自變量 x 等于_?時的函數(shù)值是 810用作圖象的方法解方程2x+3=9 11彈簧的長度與所掛物體的質(zhì)量的關(guān)系是一次函數(shù),如圖所示,請判斷不掛物體時彈簧的長度是多少?三、拓展延伸; 12有一個一次函數(shù)的圖象,可心和黃瑤分別說出了它的兩個特征可心:圖象與x 軸交于點( 6,0)。黃瑤:圖象與x 軸、 y 軸圍成的三角形的面積是9。你知道這個一次函數(shù)的關(guān)系式嗎?精品學(xué)習(xí)資料 可選擇p d f - - - - - - - - - - - - - - 第 22 頁,共 30 頁 - - - - - - - - -23 第 10 課時一次函數(shù)與一元一次不等式學(xué)習(xí)目標理解一元一次不等式與一次函數(shù)問題的轉(zhuǎn)化關(guān)系學(xué)會用圖象法求解不等式解集導(dǎo)學(xué)過程一、學(xué)一學(xué)(一)作出函數(shù)y=2x-5 的圖象,觀察圖象回答下列問題:1、 x 取何值時, 2x-5=0 ?2、 x 取哪些值時 , 2x-50?3、 x 取哪些值時 , 2x-53?5、如果 y=-2x-5,那么當 x 取何值時, y=0;y0專項訓(xùn)練 . ( 1)當自變量x 的取值滿足

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論