外文翻譯---在凍土環(huán)境下工作對鏟運(yùn)機(jī)鏟斗的侵害_第1頁
外文翻譯---在凍土環(huán)境下工作對鏟運(yùn)機(jī)鏟斗的侵害_第2頁
外文翻譯---在凍土環(huán)境下工作對鏟運(yùn)機(jī)鏟斗的侵害_第3頁
外文翻譯---在凍土環(huán)境下工作對鏟運(yùn)機(jī)鏟斗的侵害_第4頁
外文翻譯---在凍土環(huán)境下工作對鏟運(yùn)機(jī)鏟斗的侵害_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、. 哈爾濱工業(yè)大學(xué)本科畢業(yè)設(shè)計(jì)(論文)附錄1 在凍土環(huán)境下工作對鏟運(yùn)機(jī)鏟斗的侵害伊萬諾夫 UDC 621. 876. 6:624.13 9為了確定積極鏟運(yùn)機(jī)在凍土上工作時的有效性,我們對自然凍土周圍進(jìn)行了實(shí)地調(diào)查,為此,我們設(shè)計(jì)和制造了實(shí)驗(yàn)鏟; 在沖擊能量為100千克每米的兩個氣動錘的底部,鏟斗被安裝在一個標(biāo)準(zhǔn)的由液壓控制的刮板上。測試程序規(guī)定的記錄誘導(dǎo)應(yīng)力和壓縮空氣消耗,實(shí)驗(yàn)在砂礫粘土和壤土中進(jìn)行,實(shí)驗(yàn)時土壤的溫度在2-12度之間。為了突出鏟斗的運(yùn)動特色,我們采取了適當(dāng)?shù)闹笖?shù),即具體的能源消費(fèi)總量,這是總結(jié)的當(dāng)鏟斗內(nèi)裝滿土?xí)r的能源消耗。能源消費(fèi)的影響,打破了地面組成的具體的轉(zhuǎn)變工作狀態(tài)的能源

2、消耗和壓縮空氣上的能源消耗,這是把能耗從N轉(zhuǎn)至其強(qiáng)度i。地面的斷裂強(qiáng)度是由某一部門確定的公式?jīng)Q定的。分別來看F1和FK,在轉(zhuǎn)折點(diǎn)的開始的橫截面領(lǐng)域和F-I曲線的尾部,是在該部分的工作機(jī)構(gòu)的速度。具體的能源消耗的是由以下的公式確定的在pH值為橫向部分的破巖部位和斗齒的工作部位,力是決定轉(zhuǎn)折點(diǎn)斷裂面積的主要因素。具體的壓縮空氣的能源消費(fèi)量在Patm是指超過壓縮空氣壓力仲因子。Q是指壓縮空氣消耗圖(3)是壓縮空氣消耗的表示條款。 這里T是空氣的絕對溫度凱文規(guī)模。 P0是溫度在T = 15 C的氣壓,弗朗索瓦的絕對溫度,并且Patm.a是絕對的空氣壓力圖1是一個有計(jì)劃的厚度層被打破的具體能源消費(fèi)的各種

3、約束條件,它可以看到打破凍土?xí)r最低的能源消費(fèi),是可取的工作層厚度大于15厘米,由于能源消耗遠(yuǎn)大于更薄層表1給出了具體的打破凍土的能源消費(fèi),獲得作者的最小層厚度15-20厘米,而且還給出了實(shí)驗(yàn)數(shù)據(jù)拉恰。打破凍結(jié)壤土上- 5 - 7 負(fù)荷的影響,能源的影響正在每個100千克米履行相同的條件下 1 ??梢钥闯鼍唧w的能源消費(fèi)量為打破較少積極鏟運(yùn)機(jī)斗比分裂的一個堅(jiān)實(shí)的楔子(他們不太系數(shù)為4的影響能量為a = 100千克米。以及一個因素1.5-2.0為A = 1000千克米) 。這表明,積極的利用鏟運(yùn)機(jī)斗是一種有效的方式,打破凍結(jié)地面具體的能源消費(fèi)對填補(bǔ)桶凍結(jié)與巖石破碎確定后測定采礦的格局變化,部隊(duì)沿著填

4、補(bǔ)了鏟斗與巖石。這種陰謀顯示依賴于圖0.2 ??梢钥闯鐾肮嘌b部隊(duì)隨層厚度的拋物線規(guī)律。此外,這些曲線給出桶灌裝系數(shù),濾波,得到了這些實(shí)驗(yàn)方程,以確定具體的能源消費(fèi)填補(bǔ)桶,射血分?jǐn)?shù),并在移動刮板像汽車,絳蟲,可寫在一般形式在吉隆坡的系數(shù)松動的巖石,和Q是體積巖石鏟斗替代均衡器。 ( 5 )桶灌裝力的公積金(圖FIG.2 )和平均值的牽引作用重新獲得性,以取代刮板道路沿線的加油站,鈀( 920-1070)公斤,這是我們的實(shí)驗(yàn)) ,我們得到的各種不同的條件下的Ed和Ef曲線(如圖FIG.3 )。 當(dāng)h =10厘米時,只對凍結(jié)斷巖石進(jìn)行了微不足道的填補(bǔ)鏟斗觀察。這將是從該曲線的具體能源節(jié)能消費(fèi)減少填補(bǔ)

5、幾乎所有的厚度層被打破;然而,人們不能從這個推斷,這是比較有利的工作填補(bǔ)一斗更薄的層,因?yàn)闇p少了H不僅同時減少了力,而且還填補(bǔ)了填充系數(shù)KF的減少(見圖2 ) ,以及只有部分鏟斗裝滿。具體能源消耗填補(bǔ),礫石的比壤土的高;這也是由于的KF對砂礫地面的應(yīng)用價值低,上用凍結(jié)巖石填補(bǔ)鏟斗和流離失所的刮板類似的解凍巖石的指數(shù)做具體的能源消費(fèi)的比較,獲得了Artem'ev 2 ,表明他們是大致相同的,與巖石一起來填補(bǔ)鏟斗所需的具體的能源甚至有點(diǎn)少了凍結(jié)巖石;這顯然是由于在后一種情況中減少了摩擦 。鑒于這一事實(shí),即一些碎石不能被鏟斗拾起,能源消耗被打破是在1立方米的巖石鏟斗中,使用損失系數(shù)口(1.該

6、meanvalue當(dāng)這個系數(shù)h = 15-20厘米時為1.63 ??傮w具體能耗刮板流程,帳戶的損失系數(shù),是0.36-0.56千瓦時/ MS分析,根據(jù)地面的性質(zhì)。在凍土上工作時積極刮板鏟斗的具體能源消費(fèi)明顯的取決于厚度層已經(jīng)被打破;如果在足夠厚的層工作,如在切削方面鏟斗遠(yuǎn)遠(yuǎn)比機(jī)器更有效作業(yè)的;具體的能源開支彌補(bǔ)鏟斗與破碎巖體和取代刮板不超過相應(yīng)的值刮刀工作解凍地面.當(dāng)h=10厘米,只有微不足道填補(bǔ)鏟斗斷凍結(jié)巖石觀察。這將是從該曲線的具體能源節(jié)能消費(fèi)填補(bǔ)幾乎跌幅在所有的厚度層被打破,但是,人們不能從這個推斷,比起鏟斗的最薄層這是比較有利的工作層,因?yàn)闇p少了H是不僅減少了力,而且還填補(bǔ)了填充系數(shù)的K

7、F (圖 2 )的增長 ,以及只有部分鏟斗裝滿礫石的能源消耗填補(bǔ)桶比壤土的高;這也是由于低價值的KF為礫石地面,比較具體的能源消費(fèi)上填補(bǔ)鏟斗與凍結(jié)巖石和流離失所的刮板類似指數(shù)。沃爾沃鏟齒系統(tǒng)在關(guān)鍵位置上用耐磨材料設(shè)計(jì)自我磨利裝置,新的沃爾沃鏟齒系統(tǒng)提供了一個垂直的緊縮裝置,在鏟齒后部有一個加強(qiáng)區(qū)域,防止適配器和引導(dǎo)把柄過早磨損。適配器與鏟齒連接部分有一個角度,能更好阻止正面的力,降低鏟齒盒的開放。 倒梯形的適配器能夠在適配器與鏟齒之間提供一個合適的位置。 向里和向外的保持閂有一個可以重復(fù)使用的鋼閂和一個較小的、可以替換的二氧化碳浸漬聚氨酯的保持閂,它能提供所需的彈性,方便安裝和拆除。鋼可以形成

8、耐磨的硬鋼或者堅(jiān)韌的軟鋼。 硬鋼耐用性不好,快速擊打時能夠形成裂縫。 軟鋼耐用性好,受到強(qiáng)烈的沖擊是不易形成裂縫。為了能在不同的土壤環(huán)境下使用,大多數(shù)制造商會在兩種特性鋼之間尋求一個平衡。但是如果你想在你的鏟斗上找到合適的鏟齒,最好的方法是你要知道你的鏟齒在什么時候能超時工作。對于特別堅(jiān)韌、易磨的場合,一些制造商把磨料焊接到硬質(zhì)合金鏟齒的狹長地方。這些都是很昂貴的,通常只會在大型采石場和礦業(yè)場合使用?!斑@些都是真正的客戶,他們承擔(dān)不起停機(jī)造成的損失。”西蒙斯說。但制造商建議不要焊接自己的鏟齒的硬面?!叭绻悴荒鼙WC硬面,鏟齒可能會破碎?!盰oresen說。原因是制造商在對鏟齒進(jìn)行最終熱處理之前

9、已經(jīng)進(jìn)行了焊接,焊接形成的熱點(diǎn)可能會破壞鋼鐵的溫度,引起局部區(qū)域的斷裂。同時要牢記鏟齒不要太熱,在操作期間鏟齒太熱而不能接觸,特別是對大型裝載機(jī)的鏟齒或者是挖掘機(jī)在研磨材料時,這都會降低廉價鋼的硬度和彈性,因此在對鏟齒進(jìn)行設(shè)計(jì)時不能對溫度評級造成傷害。鏟齒斷裂是另一個考慮因素?!拔覀兯f得用戶的頭號問題最終是鏟齒破損問題”,MTG 的行銷業(yè)務(wù)總監(jiān)Nil Vallve說。在鏟齒和適配器之間出現(xiàn)松動會很快導(dǎo)致鏟齒破損或毀壞,“當(dāng)所有的新零件適合緊湊時,對于一個好的鏟齒系統(tǒng)最關(guān)鍵的還是要能夠超時間工作?!彼f。這樣的設(shè)計(jì)也是為了避免應(yīng)力集中分布區(qū)的影響力和交配表面面積為寬越好。破碎鏟齒對機(jī)器有時會出

10、現(xiàn)不止一個問題?!笆チ绥P齒的花費(fèi)就行滾雪球一樣,特別是你在做任何一種破碎工作時”, Yoresen 說,“如果你花費(fèi)$200,000做一個硬齒鋼的破碎鏟齒,那么電機(jī)或其它重要的部分就會受到影響。LITERATURE CITED1. A .N .Zelenin, Principles of Mechanical Breaking of Ground in Russian, Mashinostroenie ,Moscow (1968)2. K .A .Artem'ev ,Principles of the Theory of Scraper Excavation in Russian,

11、Mashgiz ,Moscow (1963)”附錄2ENERGY CONSUMED IN WORKING FROZEN GROUNDWITH AN ACTIVE SCRAPER BUCKETR. A .Ivanov UDC 621.876.6:624.13 9To determine the effectiveness of using active scrapers for working frozen ground, we carried out field inves-tigations on natural frozen ground. For this purpose we desi

12、gned and made an experimental bucket; in the bottom of which were located two pneumatic hammers with an impact energy of 100 kgm. The bucket was installed on astandard scraper with hydraulic control. The test procedure provided for recording of the induced stress and thecompressed air consumption. T

13、he experiments were performed in gravelly clay and loam; the soil temperatureduring the investigations was between一2 and一120C. To characterize the efficiency of scraper operation, we took a suitable index, namely the total specific en-ergy consumption, which was the sum of the energy consumption on

14、breaking the frozen ground, filling the bucketwith this material, and shifting the scraper.The energy consumption of impact-breakingof the ground consisted of the specific energy consumption onshifting the working member F5 and the energy consumption on compressed air,and was the ratio of the powerc

15、onsumed N to its intensity i. The intensity of breaking of the ground in the given sector was determined fromthe equation where Fi and Fk are, respectively, the cross-sectional areas of thefracture "path" at the beginning and end of the sector i-k, and Vsis the speed of the working member

16、in the sector.The specific energy consumptions on shifting the working member were determined by means of the equation where Ph is the horizontal component of the rock-breaking forceson the teeth of the working member, and F is the cross-sectional area of the fracture "path. The specific energy

17、 consumption on compressed air was where Patm is the mean excess compressed air pressure in the sec-tor. * and Q is the mean comumption of compressed air.In Eq. (3) the compressed air consumption is expressed in terms of free air。where T is the absolute temperature of the air on the Kelvinscale ,P0

18、is the air pressure at t = 15"C ,T Ois the absolutetemperature ,and Patm.a is the absolute air pressure.Figure 1 is a plot of the specific energy consumptionvs the thickness of the layer being broken under various con-ditions; it will be seen that for minimal energy consumptionon breaking froze

19、n ground ,it is desirable to work layemthickerthan 15 cm ,because the energy consumption is much greaterfor thinner layers.Table 1 gives the specific energy consumptions onbreaking frozen ground, obtained by the author for layerthick-nesses of 15-20 cm; it also gives the data of experiments byA .N .

20、Zelenin on breaking frozen loam at - 5 and - 7 by an impact load, the energy of each impact being 100 kgm,performed under the same conditions 1 .It will be seen that the specific energy consumption on breaking areless for an active scraper bucket than for splitting by a solid wedge (they are less by

21、 a factor of 4 for an impact en-ergy A = 100 kgm .and by a factor fo 1.5-2.0 for A = 1000 kgm) .This shows that the use of an active scraperbucket is an efficient way of breaking frozen ground.The specific energy consumption on filling the bucket with broken frozen rock was determined after deter-mi

22、ning the pattern of change in forces along the path of filling of the bucket with rock ,lf .This dependence isplotted graphically in Fig .2. It will be seen that the bucket filling forces increased with the layer thickness by a parabolic law. Furthermore ,these curves give the bucket filling coeffic

23、ients, Kf ,obtained by these experiments.The equations for determining the specific energy consumption on filling the bucket ,Ef, and on moving the scraper like a vehicle, Em ,may be written in the general form where Kl is the coefficient of loosening of the rock ,and q is the volume of rock in the

24、bucket.Substituting into Eq. (5) the bucket filling forces pf (Fig .2) and the mean value of the tractive effect re-quired to displace the scraper along the filling path ,Pd (this was 920-1070 kg in our experiments) ,we get the val-ues of Ef and gd for various different breaking conditions (Fig .3).

25、When h < 10 cm ,only negligible filling of the bucket with broken frozenrock was observed .It will be seen from the curves that the specific energy con-sumption of filling hardly decreases at all with the thickness of the layer beingbroken; however, one cannot infer from this that it is more adva

26、ntageous to fillthe bucket by working a thinner layer, because a decrease in h is accompaniedsimultaneously not only by a decrease in the filling forces but also by a decreasein the filling coefficient Kf (Fig. 2) ,and the bucket is only partly filled. Thespecific energy consumption on filling the b

27、ucket is somewhat higher for gravelthan for loam; this is also due to the lower values of Kf for gravelly ground.A comparison of the specific energy consumptions on filling the bucketwith frozen rock and on displacement of the scraper with the analogous indicesfor unfrozen rock ,obtained by Artem

28、9;ev 2 ,reveals that they are virtually the same and that the specific energy expenditure required to fill the bucket with rock is even somewhat less for frozenrock; this is evidently attributable to the reduced friction in the latter'case.In view of the fact that some of the broken rock was not

29、 picked up by the bucket, the energy consumption of breaking was recalculated breaking a cubic meter of rock in the bucket ,using the loss coefficient I(l .The meanvalue of this coefficient when h = 15-20 cm was 1.63 .The overall specific energy consumption of the scraper pro-cess ,with account for

30、the loss coefficient ,was 0.36-0.56 kWh/m s, according to the nature of the ground.The results of these investigations enable one to draw certain conclmions: the specific energy consumptionof working frozen ground with active scraper buckets depends markedly on the thickness of the layer being broke

31、n;if the layer worked is sufficiently thick ,such buckets are far more efficient than machines operating on the cuttingprinciple; the specific energy expenditures on filling the bucket with broken rock and on displacing the scraper do not exceed the corresponding values for scrapers working unfrozen

32、 ground.When h < 10 cm ,only negligible filling of the bucket with broken frozenrock was observed .It will be seen from the curves that the specific energy con-sumption of filling hardly decreases at all with the thickness of the layer beingbroken; however, one cannot infer from this that it is m

33、ore advantageous to fillthe bucket by working a thinner layer, because a decrease in h is accompaniedsimultaneously not only by a decrease in the filling forces but also by a decreasein the filling coefficient Kf (Fig. 2) ,and the bucket is only partly filled. Thespecific energy consumption on filli

34、ng the bucket is somewhat higher for gravelthan for loam; this is also due to the lower values of Kf for gravelly ground.A comparison of the specific energy consumptions on filling the bucketwith frozen rock and on displacement of the scraper with the analogous indices VOLVO TOOTH SYSTEMA self-sharp

35、ening design with strategically positioned wear material, the new Volvo tooth system offers a vertical locking device and a reinforced area on the heel of the tooth that protects the adapter and guide lugs from early wear. The edge where the adapter meets the tooth is angled, which better resists fr

36、ontal forces and reduces the risk of the tooth box opening up. The inverted trapezoidal shape of the adapter nose provides a snug fit between the adapter and tooth even when the teeth are well worn. The tap-in/tap-out retainer pin has a reusable steel pin and a smaller, replaceable polyurethane reta

37、iner impregnated with carbon dioxide to provide the required elasticity for easy installation and removal.Steel can be formulated to be hard and abrasion resistant or soft and tough. A hard steel wont wear out as quickly, but a hard, quick hit may cause it to crack. Soft steel wears faster but can t

38、ake shocks without breaking or developing cracks. To cover a wide variety of applications and soil conditions, most manufacturers strike a balance between the two properties. But the best way to know if youve got the right type of steel in your teeth is to observe how they perform over time.For part

39、icularly tough, abrasive applications some manufacturers weld carbide strips onto the tooth in highfriction areas. These are expensive, and usually make sense only for the large quarries and mines. “Those are really for applications where the customer cant afford the downtime,” Simmons says.But what

40、 manufacturers dont recommend is hardfacing the teeth yourself. “It will void the warranty if you hardface, and the tooth will probably break,” Yoresen says. The reason is that manufacturers put the carbide wear strips on before the tooth goes through its final heat treating process. The heat generated by welding a finished tooth will ruin the temper of the steel and cause that area to be subject to breakage.And keep in mind that teeth get hot too hot

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論