高等數(shù)學:1-2 數(shù)列的極限_第1頁
高等數(shù)學:1-2 數(shù)列的極限_第2頁
高等數(shù)學:1-2 數(shù)列的極限_第3頁
高等數(shù)學:1-2 數(shù)列的極限_第4頁
高等數(shù)學:1-2 數(shù)列的極限_第5頁
已閱讀5頁,還剩41頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、第二節(jié)第二節(jié) 數(shù)列的極限數(shù)列的極限一、概念的引入一、概念的引入二、數(shù)列的定義二、數(shù)列的定義三、數(shù)列的極限三、數(shù)列的極限四、數(shù)列極限的性質四、數(shù)列極限的性質“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”1 1、割圓術:、割圓術:播放播放劉徽劉徽一、概念的引入一、概念的引入R正六邊形的面積正六邊形的面積1A正十二邊形的面積正十二邊形的面積2A正正 形的面積形的面積126 nnA,321nAAAAS2 2、截丈問題:、截丈問題:“一尺之棰,日截其半,萬世不竭一尺之棰,日截其半,萬世不竭”;211 X第一天截下的

2、杖長為第一天截下的杖長為;212122 X為為第二天截下的杖長總和第二天截下的杖長總和;2121212nnXn 天截下的杖長總和為天截下的杖長總和為第第nnX211 1二、數(shù)列的定義二、數(shù)列的定義定義定義:按自然數(shù)按自然數(shù), 3 , 2 , 1編號依次排列的一列數(shù)編號依次排列的一列數(shù) ,21nxxx (1)稱為稱為無窮數(shù)列無窮數(shù)列,簡稱簡稱數(shù)列數(shù)列.其中的每個數(shù)稱為數(shù)其中的每個數(shù)稱為數(shù)列的列的項項,nx稱為稱為通項通項(一般項一般項).數(shù)列數(shù)列(1)記為記為nx.例如例如;,2 , 8 , 4 , 2n;,21,81,41,21n2n21n注意:注意: 1.數(shù)列對應著數(shù)軸上一個點列數(shù)列對應著數(shù)

3、軸上一個點列.可看作一可看作一動點在數(shù)軸上依次取動點在數(shù)軸上依次取.,21nxxx1x2x3x4xnx2.數(shù)列是整標函數(shù)數(shù)列是整標函數(shù)).(nfxn ;,)1( , 1 , 1, 11 n)1(1 n;,)1(,34,21, 21nnn )1(1nnn ,333,33, 3 .)1(11時的變化趨勢時的變化趨勢當當觀察數(shù)列觀察數(shù)列 nnn播放播放三、數(shù)列的極限三、數(shù)列的極限問題問題: 當當 無限增大時無限增大時, 是否無限接近于某一是否無限接近于某一確定的數(shù)值確定的數(shù)值?如果是如果是,如何確定如何確定?nxn. 1)1(1,1無限接近于無限接近于無限增大時無限增大時當當nxnnn 問題問題:

4、“無限接近無限接近”意味著什么意味著什么?如何用數(shù)學語言如何用數(shù)學語言刻劃它刻劃它. 1nxnnn11)1(1 通過上面演示實驗的觀察通過上面演示實驗的觀察:,1001給定給定,10011 n由由,100時時只要只要 n,10011 nx有有,10001給定給定,1000時時只要只要 n,1000011 nx有有,100001給定給定,10000時時只要只要 n,100011 nx有有, 0 給定給定,)1(時時只要只要 Nn.1成立成立有有 nx定義定義 如果對于任意給定的正數(shù)如果對于任意給定的正數(shù) ( (不論它多么不論它多么小小),),總存在正數(shù)總存在正數(shù)N, ,使得對于使得對于Nn 時的

5、一切時的一切nx, ,不等式不等式 axn都成立都成立, ,那末就稱常數(shù)那末就稱常數(shù)a是數(shù)列是數(shù)列nx的極限的極限, ,或者稱數(shù)列或者稱數(shù)列nx收斂于收斂于a, ,記為記為 ,limaxnn 或或).( naxn如果數(shù)列沒有極限如果數(shù)列沒有極限,就說數(shù)列是發(fā)散的就說數(shù)列是發(fā)散的.注意:注意:;. 1的無限接近的無限接近與與刻劃了刻劃了不等式不等式axaxnn . 2有關有關與任意給定的正數(shù)與任意給定的正數(shù) N., 0, 0lim axNnNaxnnn恒有恒有時時使使x1x2x2 Nx1 Nx3x幾何解釋幾何解釋: 2 a aa.)(,),(,落在其外落在其外個個至多只有至多只有只有有限個只有有

6、限個內(nèi)內(nèi)都落在都落在所有的點所有的點時時當當NaaxNnn :定義定義N 其中其中;:每一個或任給的每一個或任給的 .:至少有一個或存在至少有一個或存在 數(shù)列極限的定義未給出求極限的方法數(shù)列極限的定義未給出求極限的方法.例例1. 1)1(lim1 nnnn證明證明證證1 nx1)1(1 nnnn1 , 0 任給任給,1 nx要要,1 n只要只要,1 n或或所以所以,1 N取取,時時則當則當Nn 1)1(1nnn就有就有. 1)1(lim1 nnnn即即注意:注意:例例2.lim),(CxCCxnnn 證明證明為常數(shù)為常數(shù)設設證證Cxn CC ,成成立立 ,0 任給任給所以所以,0 ,n對于一切

7、自然數(shù)對于一切自然數(shù).limCxnn 說明說明:常數(shù)列的極限等于同一常數(shù)常數(shù)列的極限等于同一常數(shù).小結小結: 用定義證數(shù)列極限存在時用定義證數(shù)列極限存在時,關鍵是任意給關鍵是任意給定定 尋找尋找N,但不必要求最小的但不必要求最小的N., 0 例例3. 1, 0lim qqnn其中其中證明證明證證, 0 任給任給,0 nnqx,lnln qn,lnlnqN 取取,時時則當則當Nn ,0 nq就有就有. 0lim nnq, 0 q若若; 00limlim nnnq則則, 10 q若若,lnlnqn 例例4.lim, 0lim, 0axaxxnnnnn 求證求證且且設設證證, 0 任給任給.lima

8、xnn 故故,limaxnn ,1 axNnNn時恒有時恒有使得當使得當axaxaxnnn 從而有從而有aaxn a1 四、四、數(shù)列極限的性質數(shù)列極限的性質1、唯一性、唯一性定理定理1 1 每個收斂的數(shù)列只有一個極限每個收斂的數(shù)列只有一個極限. .證證,lim,limbxaxnnnn 又又設設由定義由定義,使得使得., 021NN ;1 axNnn時恒有時恒有當當;2 bxNnn時恒有時恒有當當 ,max21NNN 取取時有時有則當則當Nn )()(axbxbann axbxnn .2 .時才能成立時才能成立上式僅當上式僅當ba 故收斂數(shù)列極限唯一故收斂數(shù)列極限唯一.P28 例42、有界性有界

9、性定義定義: 對數(shù)列對數(shù)列nx, 若存在正數(shù)若存在正數(shù)M, 使得一切自使得一切自然數(shù)然數(shù)n, 恒有恒有Mxn 成立成立, 則稱數(shù)列則稱數(shù)列nx有界有界,否則否則, 稱為無界稱為無界.例如例如,;1 nnxn數(shù)列數(shù)列.2nnx 數(shù)列數(shù)列數(shù)軸上對應于有界數(shù)列的點數(shù)軸上對應于有界數(shù)列的點nx都落在閉區(qū)間都落在閉區(qū)間,MM 上上.有界有界無界無界定理定理2 2 收斂的數(shù)列必定有界收斂的數(shù)列必定有界. .證證,limaxnn 設設由定義由定義, 1 取取, 1, axNnNn時恒有時恒有使得當使得當則則. 11 axan即有即有,1,1,max1 aaxxMN記記,Mxnn 皆有皆有則對一切自然數(shù)則對一

10、切自然數(shù) .有界有界故故nx注意:注意:有界性是數(shù)列收斂的必要條件有界性是數(shù)列收斂的必要條件.推論推論 無界數(shù)列必定發(fā)散無界數(shù)列必定發(fā)散. .例例5.)1(1是發(fā)散的是發(fā)散的證明數(shù)列證明數(shù)列 nnx證證,limaxnn 設設由定義由定義,21 對于對于,21,成立成立有有時時使得當使得當則則 axNnNn),21,21(, aaxNnn時時即當即當區(qū)間長度為區(qū)間長度為1.,1, 1兩個數(shù)兩個數(shù)無休止地反復取無休止地反復取而而 nx不可能同時位于不可能同時位于長度為長度為1的的區(qū)間內(nèi)區(qū)間內(nèi)., ,但卻發(fā)散但卻發(fā)散是有界的是有界的事實上事實上nx3 3、 收斂數(shù)列具有保號性收斂數(shù)列具有保號性( (

11、定理定理3)3)若若lim,nnxa 且且0,a ,nN 當當時時有有0nx (0) (0) 證證: 對對 a 0 , 取取,2a ,nN 當當時時nxa2anx 02aa ax2a2a推論推論: 若數(shù)列從某項起若數(shù)列從某項起0,nx lim,nnxa 且且0a 則則(0) (0). (用反證法證明用反證法證明)ON ,N 則則N ,N 則則4、子數(shù)列的收斂性、子數(shù)列的收斂性 的子數(shù)列(或子列)的子數(shù)列(或子列)的一個數(shù)列稱為原數(shù)列的一個數(shù)列稱為原數(shù)列到到中的先后次序,這樣得中的先后次序,這樣得這些項在原數(shù)列這些項在原數(shù)列保持保持中任意抽取無限多項并中任意抽取無限多項并定義:在數(shù)列定義:在數(shù)列

12、nnnxxx,21nixxxx,21knnnxxx .knxxxkxxkknnnnkkk 項,顯然,項,顯然,中卻是第中卻是第在原數(shù)列在原數(shù)列而而項,項,是第是第中,一般項中,一般項在子數(shù)列在子數(shù)列注意:注意:例如,例如,定理定理4 4 收斂數(shù)列的任一子數(shù)列也收斂且極限收斂數(shù)列的任一子數(shù)列也收斂且極限相同相同證證 的任一子數(shù)列的任一子數(shù)列是數(shù)列是數(shù)列設數(shù)列設數(shù)列nnxxk,limaxnn ., 0, 0 axNnNn恒有恒有時時使使,NK 取取,時時則當則當Kk .kKNnnnN. axkn.limaxknk 證畢證畢 由定理由定理4可知,若數(shù)列可知,若數(shù)列 有兩個子數(shù)列收斂有兩個子數(shù)列收斂

13、nx于不同的極限,那么數(shù)列于不同的極限,那么數(shù)列 是發(fā)散的。是發(fā)散的。 nx例如數(shù)列例如數(shù)列 。 1( 1)n 一個發(fā)散的數(shù)列也有收斂的子列。一個發(fā)散的數(shù)列也有收斂的子列。五、小結五、小結數(shù)列數(shù)列: :研究其變化規(guī)律研究其變化規(guī)律;數(shù)列極限數(shù)列極限: :極限思想、精確定義、幾何意義極限思想、精確定義、幾何意義;收斂數(shù)列的性質收斂數(shù)列的性質: :有界性、唯一性、保號性、子數(shù)列的收斂性有界性、唯一性、保號性、子數(shù)列的收斂性.1 1、割圓術:、割圓術:“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”劉徽劉徽一、概

14、念的引入一、概念的引入1 1、割圓術:、割圓術:“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”劉徽劉徽一、概念的引入一、概念的引入“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”1 1、割圓術:、割圓術:劉徽劉徽一、概念的引入一、概念的引入“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”1 1、割圓術:、割圓術:劉徽劉徽一、概念的引

15、入一、概念的引入“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”1 1、割圓術:、割圓術:劉徽劉徽一、概念的引入一、概念的引入“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”1 1、割圓術:、割圓術:劉徽劉徽一、概念的引入一、概念的引入“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”1 1、割圓術:、割圓術:劉徽劉徽一、概念的引入一、

16、概念的引入“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”1 1、割圓術:、割圓術:劉徽劉徽一、概念的引入一、概念的引入“割之彌細,所割之彌細,所失彌少,割之又失彌少,割之又割,以至于不可割,以至于不可割,則與圓周合割,則與圓周合體而無所失矣體而無所失矣”1 1、割圓術:、割圓術:劉徽劉徽一、概念的引入一、概念的引入.)1(11時的變化趨勢時的變化趨勢當當觀察數(shù)列觀察數(shù)列 nnn三、數(shù)列的極限三、數(shù)列的極限.)1(11時的變化趨勢時的變化趨勢當當觀察數(shù)列觀察數(shù)列 nnn三、數(shù)列的極限三、數(shù)列的極限.)1(11時的變化趨勢時的變化趨勢當當觀察數(shù)列觀察數(shù)列 nnn三、數(shù)列的極限三、數(shù)列的極限.)1(11時的變化趨勢時的變化趨勢當當觀察數(shù)列觀察數(shù)列 nnn三、數(shù)列的極限三、數(shù)列的極限.)1(11時的變化趨勢時的變化趨勢當當觀察數(shù)列觀察數(shù)列 nnn三、數(shù)列的極限三、數(shù)列的極限.)1(11時的變化趨勢時的變化趨勢當當觀察數(shù)列觀察數(shù)列 nnn三、數(shù)列的極限三、數(shù)列的極限.)1(11時的變化趨勢時的變化趨勢當當觀察數(shù)列觀察數(shù)列 nnn三、數(shù)列的極限三、數(shù)列的極限.)1(11時的變化趨

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論