數(shù)列專題總復(fù)習(xí)知識(shí)點(diǎn)整理與經(jīng)典例題講解-高三數(shù)學(xué)14頁(yè)_第1頁(yè)
數(shù)列專題總復(fù)習(xí)知識(shí)點(diǎn)整理與經(jīng)典例題講解-高三數(shù)學(xué)14頁(yè)_第2頁(yè)
數(shù)列專題總復(fù)習(xí)知識(shí)點(diǎn)整理與經(jīng)典例題講解-高三數(shù)學(xué)14頁(yè)_第3頁(yè)
數(shù)列專題總復(fù)習(xí)知識(shí)點(diǎn)整理與經(jīng)典例題講解-高三數(shù)學(xué)14頁(yè)_第4頁(yè)
數(shù)列專題總復(fù)習(xí)知識(shí)點(diǎn)整理與經(jīng)典例題講解-高三數(shù)學(xué)14頁(yè)_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、數(shù)列專題復(fù)習(xí)一、等差數(shù)列的有關(guān)概念:1、等差數(shù)列的判斷方法:定義法或。如設(shè)是等差數(shù)列,求證:以bn= 為通項(xiàng)公式的數(shù)列為等差數(shù)列。2、等差數(shù)列的通項(xiàng):或。如(1)等差數(shù)列中,則通項(xiàng)(答:);(2)首項(xiàng)為-24的等差數(shù)列,從第10項(xiàng)起開(kāi)始為正數(shù),則公差的取值范圍是_(答:)3、等差數(shù)列的前和:,。如(1)數(shù)列 中,前n項(xiàng)和,則 ,(答:,);(2)已知數(shù)列 的前n項(xiàng)和,求數(shù)列的前項(xiàng)和(答:).4、等差中項(xiàng):若成等差數(shù)列,則A叫做與的等差中項(xiàng),且。提醒:(1)等差數(shù)列的通項(xiàng)公式及前和公式中,涉及到5個(gè)元素:、及,其中、稱作為基本元素。只要已知這5個(gè)元素中的任意3個(gè),便可求出其余2個(gè),即知3求2。(

2、2)為減少運(yùn)算量,要注意設(shè)元的技巧,如奇數(shù)個(gè)數(shù)成等差,可設(shè)為,(公差為);偶數(shù)個(gè)數(shù)成等差,可設(shè)為,,(公差為2)5、等差數(shù)列的性質(zhì):(1)當(dāng)公差時(shí),等差數(shù)列的通項(xiàng)公式是關(guān)于的一次函數(shù),且斜率為公差;前和是關(guān)于的二次函數(shù)且常數(shù)項(xiàng)為0.(2)若公差,則為遞增等差數(shù)列,若公差,則為遞減等差數(shù)列,若公差,則為常數(shù)列。(3)當(dāng)時(shí),則有,特別地,當(dāng)時(shí),則有.如(1)等差數(shù)列中,則_(答:27); (4) 若、是等差數(shù)列,則、 (、是非零常數(shù))、 ,也成等差數(shù)列,而成等比數(shù)列;若是等比數(shù)列,且,則是等差數(shù)列. 如等差數(shù)列的前n項(xiàng)和為25,前2n項(xiàng)和為100,則它的前3n和為 。(答:225)(5)在等差數(shù)列

3、中,當(dāng)項(xiàng)數(shù)為偶數(shù)時(shí),;項(xiàng)數(shù)為奇數(shù)時(shí),(這里即);。如(1)在等差數(shù)列中,S1122,則_(答:2);(2)項(xiàng)數(shù)為奇數(shù)的等差數(shù)列中,奇數(shù)項(xiàng)和為80,偶數(shù)項(xiàng)和為75,求此數(shù)列的中間項(xiàng)與項(xiàng)數(shù)(答:5;31).(6)若等差數(shù)列、的前和分別為、,且,則.如設(shè)與是兩個(gè)等差數(shù)列,它們的前項(xiàng)和分別為和,若,那么_(答:)(7)“首正”的遞減等差數(shù)列中,前項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和;“首負(fù)”的遞增等差數(shù)列中,前項(xiàng)和的最小值是所有非正項(xiàng)之和。法一:由不等式組確定出前多少項(xiàng)為非負(fù)(或非正);法二:因等差數(shù)列前項(xiàng)是關(guān)于的二次函數(shù),故可轉(zhuǎn)化為求二次函數(shù)的最值,但要注意數(shù)列的特殊性。上述兩種方法是運(yùn)用了哪種數(shù)學(xué)思想?(

4、函數(shù)思想),由此你能求一般數(shù)列中的最大或最小項(xiàng)嗎?如(1)等差數(shù)列中,問(wèn)此數(shù)列前多少項(xiàng)和最大?并求此最大值。(答:前13項(xiàng)和最大,最大值為169);(2)若是等差數(shù)列,首項(xiàng),則使前n項(xiàng)和成立的最大正整數(shù)n是 (答:4006)(3)在等差數(shù)列中,且,是其前項(xiàng)和,則( )A、都小于0,都大于0B、都小于0,都大于0C、都小于0,都大于0D、都小于0,都大于0(答:B)(8)如果兩等差數(shù)列有公共項(xiàng),那么由它們的公共項(xiàng)順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù). 注意:公共項(xiàng)僅是公共的項(xiàng),其項(xiàng)數(shù)不一定相同,即研究.二、等比數(shù)列的有關(guān)概念:1、等比數(shù)列的判斷方法:定義

5、法,其中或。如(1)一個(gè)等比數(shù)列共有項(xiàng),奇數(shù)項(xiàng)之積為100,偶數(shù)項(xiàng)之積為120,則為_(kāi)(答:);(2)數(shù)列中,=4+1 ()且=1,若 ,求證:數(shù)列是等比數(shù)列。2、等比數(shù)列的通項(xiàng):或。如等比數(shù)列中,前項(xiàng)和126,求和.(答:,或2)3、等比數(shù)列的前和:當(dāng)時(shí),;當(dāng)時(shí),。如(1)等比數(shù)列中,2,S99=77,求(答:44);(2)的值為_(kāi)(答:2046);特別提醒:等比數(shù)列前項(xiàng)和公式有兩種形式,為此在求等比數(shù)列前項(xiàng)和時(shí),首先要判斷公比是否為1,再由的情況選擇求和公式的形式,當(dāng)不能判斷公比是否為1時(shí),要對(duì)分和兩種情形討論求解。4、等比中項(xiàng):若成等比數(shù)列,那么A叫做與的等比中項(xiàng)。提醒:不是任何兩數(shù)都有

6、等比中項(xiàng),只有同號(hào)兩數(shù)才存在等比中項(xiàng),且有兩個(gè)。如已知兩個(gè)正數(shù)的等差中項(xiàng)為A,等比中項(xiàng)為B,則A與B的大小關(guān)系為_(kāi)(答:AB)提醒:(1)等比數(shù)列的通項(xiàng)公式及前和公式中,涉及到5個(gè)元素:、及,其中、稱作為基本元素。只要已知這5個(gè)元素中的任意3個(gè),便可求出其余2個(gè),即知3求2;(2)為減少運(yùn)算量,要注意設(shè)元的技巧,如奇數(shù)個(gè)數(shù)成等比,可設(shè)為,(公比為);但偶數(shù)個(gè)數(shù)成等比時(shí),不能設(shè)為,因公比不一定為正數(shù),只有公比為正時(shí)才可如此設(shè),且公比為。如有四個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列,后三個(gè)成等比數(shù)列,且第一個(gè)數(shù)與第四個(gè)數(shù)的和是16,第二個(gè)數(shù)與第三個(gè)數(shù)的和為12,求此四個(gè)數(shù)。(答:15,,9,3,1或0,4,

7、8,16)5.等比數(shù)列的性質(zhì):(1)當(dāng)時(shí),則有,特別地,當(dāng)時(shí),則有.如(1)在等比數(shù)列中,公比q是整數(shù),則=_(答:512);(2)各項(xiàng)均為正數(shù)的等比數(shù)列中,若,則 (答:10)。(2) 若是等比數(shù)列,則、成等比數(shù)列;若成等比數(shù)列,則、成等比數(shù)列; 若是等比數(shù)列,且公比,則數(shù)列 ,也是等比數(shù)列。當(dāng),且為偶數(shù)時(shí),數(shù)列 ,是常數(shù)數(shù)列0,它不是等比數(shù)列. 如(1)已知且,設(shè)數(shù)列滿足,且,則. (答:);(2)在等比數(shù)列中,為其前n項(xiàng)和,若,則的值為_(kāi)(答:40)(3)若,則為遞增數(shù)列;若, 則為遞減數(shù)列;若 ,則為遞減數(shù)列;若, 則為遞增數(shù)列;若,則為擺動(dòng)數(shù)列;若,則為常數(shù)列.(4) 當(dāng)時(shí),這里,但

8、,是等比數(shù)列前項(xiàng)和公式的一個(gè)特征,據(jù)此很容易根據(jù),判斷數(shù)列是否為等比數(shù)列。如若是等比數(shù)列,且,則 (答:1)(5) .如設(shè)等比數(shù)列的公比為,前項(xiàng)和為,若成等差數(shù)列,則的值為_(kāi)(答:2)(6) 在等比數(shù)列中,當(dāng)項(xiàng)數(shù)為偶數(shù)時(shí),;項(xiàng)數(shù)為奇數(shù)時(shí),.(7)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列,故常數(shù)數(shù)列僅是此數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。如設(shè)數(shù)列的前項(xiàng)和為(), 關(guān)于數(shù)列有下列三個(gè)命題:若,則既是等差數(shù)列又是等比數(shù)列;若,則是等差數(shù)列;若,則是等比數(shù)列。這些命題中,真命題的序號(hào)是 (答:)三、數(shù)列通項(xiàng)公式的求法一、公式法;等差、等比數(shù)列公式.例 已知數(shù)列滿足,求數(shù)列的

9、通項(xiàng)公式。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,說(shuō)明數(shù)列是等差數(shù)列,再直接利用等差數(shù)列的通項(xiàng)公式求出,進(jìn)而求出數(shù)列的通項(xiàng)公式。二、累加法例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。三、累乘法例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系轉(zhuǎn)化為,進(jìn)而求出,即得數(shù)列的通項(xiàng)公式。四、取倒數(shù)法例 已知數(shù)列中,其中,且當(dāng)n2時(shí),求通項(xiàng)公式。解 將兩邊取倒數(shù)得:,這說(shuō)明是一個(gè)等差數(shù)列,首項(xiàng)是,公差為2,所以,即

10、.五、待定系數(shù)法例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求出數(shù)列的通項(xiàng)公式。例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。評(píng)注:本題解題的關(guān)鍵是把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求數(shù)列的通項(xiàng)公式。六、對(duì)數(shù)變換法例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。評(píng)注:本題解題的關(guān)鍵是通過(guò)對(duì)數(shù)變換把遞推關(guān)系式轉(zhuǎn)化為,從而可知數(shù)列是等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求出數(shù)列的通項(xiàng)公式。七、迭代法例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。評(píng)注:本題還可綜合利用累乘法和對(duì)數(shù)變換法求數(shù)列的通項(xiàng)公式。

11、即先將等式兩邊取常用對(duì)數(shù)得,即,再由累乘法可推知,從而。八、數(shù)學(xué)歸納法例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:由及,得。由此可猜測(cè),往下用數(shù)學(xué)歸納法證明這個(gè)結(jié)論。(1)當(dāng)時(shí),所以等式成立。(2)假設(shè)當(dāng)時(shí)等式成立,即,則當(dāng)時(shí),。由此可知,當(dāng)時(shí)等式也成立。根據(jù)(1),(2)可知,等式對(duì)任何都成立。九、換元法例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:令,則故,代入得。即因?yàn)?,故則,即,可化為,所以是以為首項(xiàng),以為公比的等比數(shù)列,因此,則,即,得。十、構(gòu)造等差、等比數(shù)列法 ;.例 已知數(shù)列中,求數(shù)列的通項(xiàng)公式.【解析】 【反思?xì)w納】遞推關(guān)系形如“” 適用于待定系數(shù)法或特征根法:令; 在中令,;由得,.例

12、 已知數(shù)列中,求數(shù)列的通項(xiàng)公式.【解析】,令 【反思?xì)w納】遞推關(guān)系形如“”通過(guò)適當(dāng)變形可轉(zhuǎn)化為:“”或“求解.十一、不動(dòng)點(diǎn)法例 已知數(shù)列滿足,求數(shù)列的通項(xiàng)公式。解:令,得,則是函數(shù)的不動(dòng)點(diǎn)。因?yàn)椋?。評(píng)注:本題解題的關(guān)鍵是通過(guò)將的換元為,使得所給遞推關(guān)系式轉(zhuǎn)化形式,從而可知數(shù)列為等比數(shù)列,進(jìn)而求出數(shù)列的通項(xiàng)公式,最后再求出數(shù)列的通項(xiàng)公式。四、數(shù)列求和的基本方法和技巧一、利用常用求和公式求和1、 等差數(shù)列求和公式: 2、等比數(shù)列求和公式:前個(gè)正整數(shù)的和 前個(gè)正整數(shù)的平方和 前個(gè)正整數(shù)的立方和 公式法求和注意事項(xiàng) (1)弄準(zhǔn)求和項(xiàng)數(shù)的值; (2)等比數(shù)列公比未知時(shí),運(yùn)用前項(xiàng)和公式要分類。例 已知

13、,求的前n項(xiàng)和.例 設(shè)Sn1+2+3+n,nN*,求的最大值. 當(dāng) ,即n8時(shí),二、錯(cuò)位相減法求和這種方法主要用于求數(shù)列an·bn的前n項(xiàng)和,其中 an 、 bn 分別是等差數(shù)列和等比數(shù)列. 求和時(shí)一般在已知和式的兩邊都乘以組成這個(gè)數(shù)列的等比數(shù)列的公比;然后再將得到的新和式和原和式相減,轉(zhuǎn)化為同倍數(shù)的等比數(shù)列求和。例:(2009全國(guó)卷理)在數(shù)列中,(I)設(shè),求數(shù)列的通項(xiàng)公式(II)求數(shù)列的前項(xiàng)和分析:(I)由已知有利用累差迭加即可求出數(shù)列的通項(xiàng)公式: ()(II)由(I)知,=而,又是一個(gè)典型的錯(cuò)位相減法模型,易得 =三、 倒序相加法求和這是推導(dǎo)等差數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,就

14、是將一個(gè)數(shù)列倒過(guò)來(lái)排列(反序),再把它與原數(shù)列相加,就可以得到n個(gè).例 求證:證明: 設(shè) 四、分組法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開(kāi),可分為幾個(gè)等差、等比或常見(jiàn)的數(shù)列,然后分別求和,再將其合并即可.例7 求數(shù)列的前n項(xiàng)和:,解:設(shè) 當(dāng)a1時(shí), 當(dāng)時(shí),例:(2010全國(guó)卷2文)(18)(本小題滿分12分)已知是各項(xiàng)均為正數(shù)的等比數(shù)列,且,()求的通項(xiàng)公式;()設(shè),求數(shù)列的前項(xiàng)和。五、裂項(xiàng)法求和這是分解與組合思想在數(shù)列求和中的具體應(yīng)用. 裂項(xiàng)法的實(shí)質(zhì)是將數(shù)列中的每項(xiàng)(通項(xiàng))分解,然后重新組合,使之能消去一些項(xiàng),最終達(dá)到求和的目的. 通項(xiàng)分解(裂項(xiàng))如:(1) (2)(3) (4)(5)(6) 例 求數(shù)列的前n項(xiàng)和. 則 例 在數(shù)列an中,又,求數(shù)列bn的前n項(xiàng)的和.解: 六

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論