![2013年考研數(shù)學(xué)三大綱對(duì)比表-線性代數(shù)_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/14e17c5c-1614-4ea6-a875-42fa45c6436c/14e17c5c-1614-4ea6-a875-42fa45c6436c1.gif)
![2013年考研數(shù)學(xué)三大綱對(duì)比表-線性代數(shù)_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/14e17c5c-1614-4ea6-a875-42fa45c6436c/14e17c5c-1614-4ea6-a875-42fa45c6436c2.gif)
![2013年考研數(shù)學(xué)三大綱對(duì)比表-線性代數(shù)_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/14e17c5c-1614-4ea6-a875-42fa45c6436c/14e17c5c-1614-4ea6-a875-42fa45c6436c3.gif)
![2013年考研數(shù)學(xué)三大綱對(duì)比表-線性代數(shù)_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2021-12/10/14e17c5c-1614-4ea6-a875-42fa45c6436c/14e17c5c-1614-4ea6-a875-42fa45c6436c4.gif)
下載本文檔
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、線性代數(shù) 2013年與2012年考研數(shù)學(xué)三大綱變化對(duì)比來(lái)源:章節(jié)2013年新大綱2012年大綱變化情況對(duì)比行列式考試內(nèi)容行列式的概念和基本性質(zhì),行列式按行(列)展開(kāi)定理考試要求1.了解行列式的概念,掌握行列式的性質(zhì)。2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式。考試內(nèi)容行列式的概念和基本性質(zhì),行列式按行(列)展開(kāi)定理考試要求1.了解行列式的概念,掌握行列式的性質(zhì)。2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計(jì)算行列式。對(duì)比無(wú)變化,按原計(jì)劃復(fù)習(xí)矩陣考試內(nèi)容矩陣的概念,矩陣的線性運(yùn)算,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,
2、伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價(jià),分塊矩陣及其運(yùn)算考試要求1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì)。2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣。4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法。5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則??荚噧?nèi)容矩陣的概念,矩陣的線性運(yùn)算
3、,矩陣的乘法,方陣的冪,方陣乘積的行列式,矩陣的轉(zhuǎn)置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價(jià),分塊矩陣及其運(yùn)算考試要求1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì)。2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)。3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣。4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆
4、矩陣和秩的方法。5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則。對(duì)比無(wú)變化,按原計(jì)劃復(fù)習(xí)向量考試內(nèi)容向量的概念,向量的線性組合與線性表示,向量組的線性相關(guān)與線性無(wú)關(guān),向量組的極大線性無(wú)關(guān)組,等價(jià)向量組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系,向量的內(nèi)積,線性無(wú)關(guān)向量組的正交規(guī)范化方法考試要求1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則。2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法。3.理解向量組的極大線性無(wú)關(guān)組的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩。4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系
5、。5.了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法??荚噧?nèi)容向量的概念,向量的線性組合與線性表示,向量組的線性相關(guān)與線性無(wú)關(guān),向量組的極大線性無(wú)關(guān)組,等價(jià)向量組,向量組的秩,向量組的秩與矩陣的秩之間的關(guān)系,向量的內(nèi)積,線性無(wú)關(guān)向量組的正交規(guī)范化方法考試要求1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則。2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無(wú)關(guān)等概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法。3.理解向量組的極大線性無(wú)關(guān)組的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩。4.理解向量組等價(jià)的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系。5.了解
6、內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法。 對(duì)比無(wú)變化,按原計(jì)劃復(fù)習(xí)線性方程組考試內(nèi)容線性方程組的克萊姆(Crammer)法則,線性方程組有解和無(wú)解的判定,齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系,非齊次線性方程組的通解考試要求1.會(huì)用克萊姆法則解線性方程組。2.掌握非齊次線性方程組有解和無(wú)解的判定方法。3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。5.掌握用初等行變換求解線性方程組的方法??荚噧?nèi)容線性方程組的克拉默(Cram
7、mer)法則,線性方程組有解和無(wú)解的判定,齊次線性方程組的基礎(chǔ)解系和通解,非齊次線性方程組的解與相應(yīng)的齊次線性方程組(導(dǎo)出組)的解之間的關(guān)系,非齊次線性方程組的通解考試要求1.會(huì)用克萊姆法則解線性方程組。2.掌握非齊次線性方程組有解和無(wú)解的判定方法。3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法。4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念。5.掌握用初等行變換求解線性方程組的方法。克萊姆法則改為克拉默法則,對(duì)復(fù)習(xí)無(wú)影響,可按原計(jì)劃復(fù)習(xí)矩陣的特征值和特征向量考試內(nèi)容矩陣的特征值和特征向量的概念、性質(zhì),相似矩陣的概念及性質(zhì),矩陣可相似對(duì)角化的充分必要條件及相似對(duì)
8、角矩陣,實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣考試要求1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法。2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,掌握將矩陣化為相似對(duì)角矩陣的方法。3.掌握實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì)??荚噧?nèi)容矩陣的特征值和特征向量的概念、性質(zhì),相似矩陣的概念及性質(zhì),矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣,實(shí)對(duì)稱矩陣的特征值和特征向量及相似對(duì)角矩陣考試要求1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法。2.理解矩陣相似的概念,掌握相似矩
9、陣的性質(zhì),了解矩陣可相似對(duì)角化的充分必要條件,掌握將矩陣化為相似對(duì)角矩陣的方法。3.掌握實(shí)對(duì)稱矩陣的特征值和特征向量的性質(zhì)。對(duì)比無(wú)變化,按原計(jì)劃復(fù)習(xí)二次型考試內(nèi)容二次型及其矩陣表示,合同變換與合同矩陣,二次型的秩,慣性定理,二次型的標(biāo)準(zhǔn)形和規(guī)范形,用正交變換和配方法化二次型為標(biāo)準(zhǔn)形,二次型及其矩陣的正定性考試要求1.了解二次型的概念,會(huì)用矩陣形式表示二次型,了解合同變換和合同矩陣的概念。2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會(huì)用正交變換和配方法化二次型為標(biāo)準(zhǔn)形。3.理解正定二次型、正定矩陣的概念,并掌握其判別法。考試內(nèi)容二次型及其矩陣表示,合同變換與合同矩陣,二次型的秩,慣性定理,二次型的標(biāo)準(zhǔn)形和規(guī)范形,用正交變換和配方法化二次型為標(biāo)準(zhǔn)形,二次型
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙干股協(xié)議書(shū)
- 三農(nóng)政策下的鄉(xiāng)村旅游發(fā)展作業(yè)指導(dǎo)書(shū)
- 礦業(yè)與資源開(kāi)發(fā)技術(shù)作業(yè)指導(dǎo)書(shū)
- 技術(shù)服務(wù)合同
- 管理咨詢專業(yè)服務(wù)協(xié)議書(shū)
- 貸款擔(dān)保書(shū)的
- 三農(nóng)村合作社應(yīng)急管理方案
- 小學(xué)三年級(jí)口算題兩三位數(shù)乘除一位數(shù)
- 2025年陽(yáng)泉資格證模擬考試
- 小學(xué)六年級(jí)數(shù)學(xué)口算競(jìng)賽試題
- 智能RPA財(cái)務(wù)機(jī)器人開(kāi)發(fā)教程-基于來(lái)也UiBot 課件 第1章-機(jī)器人流程自動(dòng)化概述
- 2024-2025學(xué)年天津市河?xùn)|區(qū)高一上學(xué)期期末質(zhì)量檢測(cè)數(shù)學(xué)試卷(含答案)
- 信永中和筆試題庫(kù)及答案
- 甲流乙流培訓(xùn)課件
- 《視網(wǎng)膜靜脈阻塞》課件
- 2025《省建設(shè)工程檔案移交合同書(shū)(責(zé)任書(shū))》
- 《大學(xué)英語(yǔ)1》期末考試試卷及答案(???
- 《石油鉆井基本知識(shí)》課件
- 2024新滬教版英語(yǔ)(五四學(xué)制)七年級(jí)上單詞默寫單
- 電力兩票培訓(xùn)
- TCCEAS001-2022建設(shè)項(xiàng)目工程總承包計(jì)價(jià)規(guī)范
評(píng)論
0/150
提交評(píng)論