版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、一、知識必備:1直角三角形中各元素間的關(guān)系:在ABC中,C90°,ABc,ACb,BCa。(1)三邊之間的關(guān)系:a2b2c2。(勾股定理)(2)銳角之間的關(guān)系:AB90°;(3)邊角之間的關(guān)系:(銳角三角函數(shù)定義)sinAcosB,cosAsinB,tanA。2斜三角形中各元素間的關(guān)系:在ABC中,A、B、C為其內(nèi)角,a、b、c分別表示A、B、C的對邊。(1)三角形內(nèi)角和:ABC。(2)正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等(R為外接圓半徑)(3)余弦定理:a2b2c22bccosA; b2c2a22cacosB; c2a2b22abcosC。 3三角形的面
2、積公式:(1)ahabhbchc(ha、hb、hc分別表示a、b、c上的高);(2)absinCbcsinAacsinB;4解三角形:由三角形的六個元素(即三條邊和三個內(nèi)角)中的三個元素(其中至少有一個是邊)求其他未知元素的問題叫做解三角形廣義地,這里所說的元素還可以包括三角形的高、中線、角平分線以及內(nèi)切圓半徑、外接圓半徑、面積等等主要類型:(1)兩類正弦定理解三角形的問題:第1、已知兩角和任意一邊,求其他的兩邊及一角. 第2、已知兩角和其中一邊的對角,求其他邊角.(2)兩類余弦定理解三角形的問題:第1、已知三邊求三角.第2、已知兩邊和他們的夾角,求第三邊和其他兩角.5三角形中的三角變換三角形
3、中的三角變換,除了應(yīng)用上述公式和上述變換方法外,還要注意三角形自身的特點。(1)角的變換因為在ABC中,A+B+C=,所以sin(A+B)=sinC;cos(A+B)=cosC;tan(A+B)=tanC。;數(shù)學(xué)高三第一輪復(fù)習(xí)解三角形1、在三角形ABC中“cosAsinAcosBsinB”是“C90°”的 ( ) A、充分非必要條件B、必要非充分條件 C、充要條件D、既不充分也不必要條件2、設(shè)分別是中所對邊的邊長,則直線與的位置關(guān)系是( )A平行 B垂直 C重合 D相交但不垂直3、(2009宣武區(qū)文)中,分別是內(nèi)角的對邊,且則b:的值是 ( )A. 3:1 B. :1 C. :1 D
4、. 2 :14、(2009揭陽)設(shè)向量與的夾角為,定義與的“向量積”:是一個向量,它的模,若,則 ( )A B2C D45、(2009汕頭潮南)ABC的三邊分別為a,b,c且滿足,則此三角形是( )(A)等腰三角形 (B)直角三角形 (C)等腰直角三角形 (D)等邊三角形6、(2010天津理)在ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若,則A=( )(A) (B) (C) (D)7、設(shè),且,則等于( ) 或8、在ABC中,是角A、B、C成等差數(shù)列的( )A充分非必要條件 B充要條件C必要非充分條件 D既不充分也不必要條件9.(2010江西理)E,F(xiàn)是等腰直角ABC斜邊AB上的三等分點,
5、則( )A. B. C. D. 10、銳角三角形ABC中,若,則的范圍是( )A(0,2)B CD11、(2010北京文)某班設(shè)計了一個八邊形的班徽(如右上圖),它由腰長為1,頂角為的四個等腰三角形,及其底邊構(gòu)成的正方形所組成,該八邊形的面積為( )(A) (B)(C) (D)12、ABC中,已知sinA:sinB:sinC=1:1:,且SABC=,則的值是( )A2BC2D13、已知非零向量則ABC的形狀是( )A三邊均不相等的三角形B直角三角形C等腰(非等邊)三角形D等邊三角形14、ABC中,AB=,AC=,BC=2,設(shè)P為線段BC上一點,且則一定有( )AAB·AC>PA
6、2,AB·AC>PB·PCBPA2>AB·AC,PA2>PB·PC CPB·PC > AB·AC,PB·PC>PA2 DAB·AC> PB·PC ,PA2 >PB·PC15、CD是ABC的邊AB上的高,且,則 ( )AB或C或D或16、的三內(nèi)角A,B,C所對邊長分別是,設(shè)向量,若,則角的大小為_17、在中,角所對的邊分別為,若則_. 18、(2008湖北)在中,三個角的對邊邊長分別為,則的值為 .19、在平面直角坐標(biāo)系xoy中已知ABC的頂點A(6,0)
7、 和C(6,0),頂點B在雙曲線的左支上, 20、若鈍角三角形三內(nèi)角的度數(shù)成等差數(shù)列,且最小邊長與最大邊長的比值為m,則m的取值范圍是 21、在ABC中,等于 。22、(2010廣東理)已知a,b,c分別是ABC的三個內(nèi)角A,B,C所對的邊,若a=1,b=, A+C=2B,則sinC= .23、(2010重慶文)如圖,圖中的實線是由三段圓弧連接而成的一條封閉曲線,各段弧所在的圓經(jīng)過同一點(點不在上)且半徑相等. 設(shè)第段弧所對的圓心角為,則_ .24、(2010江蘇卷)在銳角三角形ABC,A、B、C的對邊分別為a、b、c,則=_。25、中,所對的邊分別為,,.(1)求;(2)若,求. 26、設(shè)的
8、內(nèi)角所對的邊分別為且.(1)求角的大小;(2)若,求的周長的取值范圍.27、設(shè)的內(nèi)角、的對邊長分別為、,求28、(2009湖南卷理). 在,已知,求角A,B,C的大小.29、已知中,記,120°(1)求關(guān)于的表達式;(2)求的值域;30、(2007山東)如圖,甲船以每小時海里的速度向正北方向航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于處時,乙船位于甲船的北偏西的方向處,此時兩船相距20海里.當(dāng)甲船航行20分鐘到達處時,乙船航行到甲船的北偏西方向的處,此時兩船相距海里,問乙船每小時航行多少海里?31、(2010福建理)。,輪船位于港口O北偏西且與該港口相距20海里的A處,并以30海里/
9、小時的航行速度沿正東方向勻速行駛。假設(shè)該小船沿直線方向以海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇。(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?(2)假設(shè)小艇的最高航行速度只能達到30海里/小時,試設(shè)計航行方案(即確定航行方向與航行速度的大小),使得小艇能以最短時間與輪船相遇,并說明理由。32、(2010江蘇卷)某興趣小組測量電視塔AE的高度H(單位:m),如示意圖,垂直放置的標(biāo)桿BC的高度h=4m,仰角ABE=,ADE=。(1)該小組已經(jīng)測得一組、的值,tan=1.24,tan=1.20,請據(jù)此算出H的值;(2)該小組分析若干測得的數(shù)據(jù)后,認(rèn)為適當(dāng)調(diào)整標(biāo)桿到電
10、視塔的距離d(單位:m),使與之差較大,可以提高測量精確度。若電視塔的實際高度為125m,試問d為多少時,-最大?33、(2009寧夏海南卷理)為了測量兩山頂M,N間的距離,飛機沿水平方向在A,B兩點進行測量,A,B,M,N在同一個鉛垂平面內(nèi)(如示意圖),飛機能夠測量的數(shù)據(jù)有俯角和A,B間的距離,請設(shè)計一個方案,包括:指出需要測量的數(shù)據(jù)(用字母表示,并在圖中標(biāo)出);用文字和公式寫出計算M,N間的距離的步驟。歷年模擬習(xí)題1已知函數(shù)的圖象如圖所示,則函數(shù)的圖象可能是(A)(B)(C)(D)2.已知函數(shù)(其中,)的部分圖象如圖所示.()求,的值; ()已知在函數(shù)圖象上的三點的橫坐標(biāo)分別為,求的值.1
11、如圖,設(shè)A、B兩點在河的兩岸,一測量者在A的同側(cè)所在的河岸邊選定一點C,測出AC的距離為50m,后,就可以計算出A、B兩點的距離為( )ABCD2在ABC中,若B=,b=,則C= 3在ABC中,BAC=90º,D是BC的中點,AB=4,AC=3,則=(A) -7(B) (C) (D) 74在中,則 _ 5.在中, ,且的面積為,則 等于 A或 B C D或6在中,則 ( )(A) (B) (C) 或 (D) 或7已知定點,點和Q分別是在直線l:和y軸上動點,則當(dāng)MPQ的周長最小值時,MPQ的面積是( ) (A) (B) (C) 1 (D) 8. 中的內(nèi)角的對邊分別為,若°,
12、則= 。9在中,若,則 10在中, ,分別為角, ,C所對的邊.已知角為銳角,且,則 .11. 在中,角A、B、C所對的邊分別為a、b、c,若,則. 12. 在中,角A、B、C所對的邊分別為a、b、c,若,則角B的值為( )A B C D13.在中,角A、B、C所對的邊分別為a、b、c,且滿足(1)求的值; (2)若的面積是,求的值 14在中,角A、B、C所對的邊分別為a、b、c,且(1)求A的值; (2)若,求的面積 15. 在銳角中,角A、B、C所對的邊分別為a、b、c,且(1)求B的值; (2)求的求值范圍。 16已知函數(shù)()求函數(shù)的單調(diào)遞增區(qū)間;()在ABC中,內(nèi)角A、B、C的對邊分別
13、為a、b、c已知, , ,求ABC的面積17在中,角,所對應(yīng)的邊分別為,且()求角的大小;()若,求的面積18.已知函數(shù).()求的單調(diào)遞增區(qū)間;()在中,角,的對邊分別為. 已知,試判斷的形狀.19.在ABC中,角A,B,C所對的邊分別為a,b,c,且()判斷ABC的形狀;()若,求的最大值20已知中,內(nèi)角的對邊分別為,且, ()求的值;()設(shè),求的面積21已知函數(shù)f(x)=sin(2x+)+cos 2x ()求函數(shù)f(x)的單調(diào)遞增區(qū)間。 ()在ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,已知f(A)=,a=2,B=,求ABC的面積22在中,角,的對邊分別為,已知向量,且()求角的大小;
14、()若,求角的值23.已知向量(0),函數(shù)的最小正周期為。(I)求函數(shù)的單調(diào)增區(qū)間;(II)如果ABC的三邊a、b、c所對的角分別為A、B、C,且滿足求的值。24. 已知函數(shù)的圖象過點. ()求的值; ()在中,角,的對邊分別是,.若, 求的取值范圍25.在中,三個內(nèi)角,的對邊分別為,且()求角;()若,求的最大值26在中,已知()求角; ()若,求K班數(shù)學(xué)高三第一輪復(fù)習(xí)解三角形參考解答110:BBDBD、ADBDC; 1115:ACDDD16、;17、;18、;19、;20、(0,);21、;22、1;23、;解析: 又,所以24、 解析 考查三角形中的正、余弦定理三角函數(shù)知識的應(yīng)用,等價轉(zhuǎn)
15、化思想。一題多解。(方法一)考慮已知條件和所求結(jié)論對于角A、B和邊a、b具有輪換性。當(dāng)A=B或a=b時滿足題意,此時有:,= 4。(方法二),25、解:(1) 因為,即,所以,即 ,得 . 所以,或(不成立).即 , 得,所以.又因為,則,或(舍去) 得(2), 又, 即 ,得26、(1)由得 又 ,又 (2)由正弦定理得:, 故的周長的取值范圍為. (2)另解:周長 由(1)及余弦定理 又即的周長的取值范圍為. 27、分析:由,易想到先將代入得。然后利用兩角和與差的余弦公式展開得;又由,利用正弦定理進行邊角互化,得,進而得.故。大部分考生做到這里忽略了檢驗,事實上,當(dāng)時,由,進而得,矛盾,應(yīng)
16、舍去。也可利用若則從而舍去。不過這種方法學(xué)生不易想到。評析:本小題考生得分易,但得滿分難。28、解:設(shè)由得,所以又因此 由得,于是所以,因此,既由A=知,所以,從而或,既或故或。29、120°解(1)由正弦定理有:;,;(2)由; 30、解 方法一 如圖所示,連結(jié)A1B2,由已知A2B2=,A1A2=,A1A2=A2B2,又A1A2B2=180°-120°=60°A1A2B2是等邊三角形,A1B2=A1A2=.由已知,A1B1=20,B1A1B2=105°-60°=45°,在A1B2B1中,由余弦定理,=+-·A1
17、B2·cos45°=202+()2-2×20××=200.B1B2=.因此,乙船的速度的大小為×60=(海里/小時).答: 乙船每小時航行海里.31、【解析】解法一:(I)設(shè)相遇時小艇航行的距離為S海里,則 = 故當(dāng)時,此時 即,小艇以海里/小時的速度航行,相遇時小艇的航行距離最小。 (II)設(shè)小艇與輪船在B出相遇,則KS*5U.C#O 故 , 即,解得 又時, 故時,t取最小值,且最小值等于 此時,在中,有,故可設(shè)計寒星方案如下: 航行方向為北偏東,航行速度為30海里/小時,小艇能以最短時間與輪船相遇解法二:(I)若相遇時小艇的航行
18、距離最小,又輪船沿正東方向勻速行駛,則小艇航行方向為正北方向。 設(shè)小艇與輪船在C處相遇。 在中, 又, 此時,輪船航行時間, 即,小艇以海里/小時的速度航行,相遇時小艇的航行距離最小。(II)猜想時,小艇能以最短時間與輪船在D出相遇,此時 又,所以,解得 據(jù)此可設(shè)計航行方案如下: 航行方向為北偏東,航行速度為30海里/小時,小艇能以最短時間與輪船相遇 證明如下:KS*5U.C#O 如圖,由(I)得,故,且對于線段上任意點P, 有 而小艇的最高航行速度只能達到30海里/小時, 故小艇與輪船不可能在A,C之間(包含C)的任意位置相遇。 設(shè),則在中, 由于從出發(fā)到相遇,輪船與小艇所需要的時間分別為 和 所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025民間個人向個人借款合同
- 2025年度知識產(chǎn)權(quán)保密協(xié)議范本(含研發(fā)成果)3篇
- 二零二五年度科技園區(qū)銀行貸款擔(dān)保協(xié)議2篇
- 2025年度農(nóng)村自建房合同協(xié)議書(含空氣源熱泵安裝)
- 二零二五年度農(nóng)業(yè)現(xiàn)代化農(nóng)村土地承包經(jīng)營權(quán)租賃協(xié)議
- 二零二五年度特種設(shè)備制造許可證轉(zhuǎn)讓合同3篇
- 2025年度飼料行業(yè)人才培養(yǎng)合作協(xié)議詳盡版3篇
- 二零二五年度XX教育機構(gòu)收取管理費服務(wù)協(xié)議3篇
- 2025年二零二五企業(yè)研發(fā)基地場地租賃合作協(xié)議3篇
- 2025年度碼頭租賃及集裝箱裝卸業(yè)務(wù)一體化合作協(xié)議3篇
- 2024北京海淀五年級(上)期末英語(教師版)
- 銷售單 代合同范例
- 煤炭供應(yīng)項目(運輸供貨方案)
- 2024-2030年中國游艇產(chǎn)業(yè)發(fā)展?fàn)顩r規(guī)劃分析報告權(quán)威版
- 新能源汽車充電樁項目可行性研究報告模板及范文
- 電力市場概論張利課后參考答案
- 無人機項目建設(shè)規(guī)劃投資計劃書
- 2024版首診負(fù)責(zé)制度課件
- 幼兒園班級管理中的沖突解決策略研究
- 【7上英YL】蕪湖市2023-2024學(xué)年七年級上學(xué)期英語期中素質(zhì)教育評估試卷
評論
0/150
提交評論