![必修2點(diǎn)直線平面之間的位置關(guān)系教案(2)_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/35e11b99-8b0b-46e8-a9fc-743c8a32f50f/35e11b99-8b0b-46e8-a9fc-743c8a32f50f1.gif)
![必修2點(diǎn)直線平面之間的位置關(guān)系教案(2)_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/35e11b99-8b0b-46e8-a9fc-743c8a32f50f/35e11b99-8b0b-46e8-a9fc-743c8a32f50f2.gif)
![必修2點(diǎn)直線平面之間的位置關(guān)系教案(2)_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/35e11b99-8b0b-46e8-a9fc-743c8a32f50f/35e11b99-8b0b-46e8-a9fc-743c8a32f50f3.gif)
![必修2點(diǎn)直線平面之間的位置關(guān)系教案(2)_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/35e11b99-8b0b-46e8-a9fc-743c8a32f50f/35e11b99-8b0b-46e8-a9fc-743c8a32f50f4.gif)
![必修2點(diǎn)直線平面之間的位置關(guān)系教案(2)_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-1/18/35e11b99-8b0b-46e8-a9fc-743c8a32f50f/35e11b99-8b0b-46e8-a9fc-743c8a32f50f5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2.2.1 直線與平面平行的判定一、教學(xué)目標(biāo):1、知識(shí)與技能(1)理解并掌握直線與平面平行的判定定理;(2)進(jìn)一步培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)的能力和空間想象能力;2、過程與方法學(xué)生通過觀察圖形,借助已有知識(shí),掌握直線與平面平行的判定定理。3、情感、態(tài)度與價(jià)值觀(1)讓學(xué)生在發(fā)現(xiàn)中學(xué)習(xí),增強(qiáng)學(xué)習(xí)的積極性;(2)讓學(xué)生了解空間與平面互相轉(zhuǎn)換的數(shù)學(xué)思想。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn)、難點(diǎn):直線與平面平行的判定定理及應(yīng)用。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生借助實(shí)例,通過觀察、思考、交流、討論等,理解判定定理。2、教學(xué)用具:投影儀(片)四、教學(xué)思想(一)創(chuàng)設(shè)情景、揭示課題引導(dǎo)學(xué)生觀察身邊的實(shí)物,如教材第55頁觀察題:封
2、面所在直線與桌面所在平面具有什么樣的位置關(guān)系?如何去確定這種關(guān)系呢?這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容。(二)研探新知a1、投影問題直線a與平面平行嗎?ab若內(nèi)有直線b與a平行,那么與a的位置關(guān)系如何?是否可以保證直線a與平面平行?學(xué)生思考后,師生共同探討,得出以下結(jié)論直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。簡(jiǎn)記為:線線平行,則線面平行。符號(hào)表示:a b = aab2、例1 引導(dǎo)學(xué)生思考后,師生共同完成該例是判定定理的應(yīng)用,讓學(xué)生掌握將空間問題轉(zhuǎn)化為平面問題的化歸思想。(三)自主學(xué)習(xí)、發(fā)展思維練習(xí):教材第57頁 1、2題讓學(xué)生獨(dú)立完成,教師檢查、指導(dǎo)
3、、講評(píng)。(四)歸納整理1、同學(xué)們?cè)谶\(yùn)用該判定定理時(shí)應(yīng)注意什么?2、在解決空間幾何問題時(shí),常將之轉(zhuǎn)換為平面幾何問題。(五)作業(yè)1、教材第64頁 習(xí)題2.2 A組第3題;2、預(yù)習(xí):如何判定兩個(gè)平面平行?2.2.2 平面與平面平行的判定一、教學(xué)目標(biāo):1、知識(shí)與技能理解并掌握兩平面平行的判定定理。2、過程與方法讓學(xué)生通過觀察實(shí)物及模型,得出兩平面平行的判定。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):兩個(gè)平面平行的判定。難點(diǎn):判定定理、例題的證明。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生借助實(shí)物,通過觀察、類比、思考、探討,教師予以啟發(fā),得出兩平面平行的判定。2、教學(xué)用具:投影儀、投影片、長(zhǎng)方體模型四、教學(xué)思想(一)創(chuàng)設(shè)情景、引
4、入課題引導(dǎo)學(xué)生觀察、思考教材第57頁的觀察題,導(dǎo)入本節(jié)課所學(xué)主題。(二)研探新知1、問題:(1)平面內(nèi)有一條直線與平面平行,、平行嗎?(2)平面內(nèi)有兩條直線與平面平行,、平行嗎?通過長(zhǎng)方體模型,引導(dǎo)學(xué)生觀察、思考、交流,得出結(jié)論。兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。符號(hào)表示:a b ab = P ab教師指出:判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;(3)垂直于同一條直線的兩個(gè)平面平行。2、例2 引導(dǎo)學(xué)生思考后,教師講授。例子的給出,有利于學(xué)生掌握該定理的應(yīng)用。(三)自主學(xué)習(xí)、加深認(rèn)識(shí)練習(xí):教材第59頁1、2、3題。學(xué)生先獨(dú)立完成
5、后,教師指導(dǎo)講評(píng)。(四)歸納整理、整體認(rèn)識(shí)1、判定定理中的線與線、線與面應(yīng)具備什么條件?2、在本節(jié)課的學(xué)習(xí)過程中,還有哪些不明白的地方,請(qǐng)向老師提出。(五)作業(yè)布置第65頁習(xí)題2.2 A組第7題。2.2.3 2.2.4直線與平面、平面與平面平行的性質(zhì)一、教學(xué)目標(biāo):1、知識(shí)與技能(1)掌握直線與平面平行的性質(zhì)定理及其應(yīng)用;(2)掌握兩個(gè)平面平行的性質(zhì)定理及其應(yīng)用。2、過程與方法學(xué)生通過觀察與類比,借助實(shí)物模型理解性質(zhì)及應(yīng)用。3、情感、態(tài)度與價(jià)值觀(1)進(jìn)一步提高學(xué)生空間想象能力、思維能力;(2)進(jìn)一步體會(huì)類比的作用;(3)進(jìn)一步滲透等價(jià)轉(zhuǎn)化的思想。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):兩個(gè)性質(zhì)定理 。難點(diǎn):(
6、1)性質(zhì)定理的證明;(2)性質(zhì)定理的正確運(yùn)用。三、學(xué)法與教學(xué)用具1、學(xué)法:學(xué)生借助實(shí)物,通過類比、交流等,得出性質(zhì)及基本應(yīng)用。2、教學(xué)用具:投影儀、投影片、長(zhǎng)方體模型四、教學(xué)思想(一)創(chuàng)設(shè)情景、引入新課1、思考題:教材第60頁,思考(1)(2)學(xué)生思考、交流,得出(1)一條直線與平面平行,并不能保證這個(gè)平面內(nèi)的所有直線都與這個(gè)直線平行;(2)直線a與平面平行,過直線a的某一平面,若與平面相交,則直線a就平行于這條交線。在教師的啟發(fā)下,師生共同完成該結(jié)論的證明過程。于是,得到直線與平面平行的性質(zhì)定理。定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡(jiǎn)記為:線面平行
7、則線線平行。符號(hào)表示:aa ab= b作用:利用該定理可解決直線間的平行問題。2、例3 培養(yǎng)學(xué)生思維,動(dòng)手能力,激發(fā)學(xué)習(xí)興趣。例4 性質(zhì)定理的直接應(yīng)用,它滲透著化歸思想,教師應(yīng)多做引導(dǎo)。3、思考:如果兩個(gè)平面平行,那么一個(gè)平面內(nèi)的直線與另一個(gè)平面內(nèi)的直線具有什么樣的位置關(guān)系?學(xué)生借助長(zhǎng)方體模型思考、交流得出結(jié)論:異面或平行。再問:平面AC內(nèi)哪些直線與BD平行?怎么找?在教師的啟發(fā)下,師生共同完成該結(jié)論及證明過程,于是得到兩個(gè)平面平行的性質(zhì)定理。定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。符號(hào)表示:= a ab= b教師指出:可以由平面與平面平行得出直線與直線平行4、例5 以講授
8、為主,引導(dǎo)學(xué)生共同完成,逐步培養(yǎng)學(xué)生應(yīng)用定理解題的能力。(三)自主學(xué)習(xí)、鞏固知識(shí)練習(xí):課本第63頁學(xué)生獨(dú)立完成,教師進(jìn)行糾正。(四)歸納整理、整體認(rèn)識(shí)1、通過對(duì)兩個(gè)性質(zhì)定理的學(xué)習(xí),大家應(yīng)注意些什么?2、本節(jié)課涉及到哪些主要的數(shù)學(xué)思想方法?(五)布置作業(yè)課本第65頁 習(xí)題2.2 A組第6題。2.3.1直線與平面垂直的判定一、教學(xué)目標(biāo)1、知識(shí)與技能(1)使學(xué)生掌握直線和平面垂直的定義及判定定理;(2)使學(xué)生掌握判定直線和平面垂直的方法;2、過程與方法(1)通過教學(xué)活動(dòng),使學(xué)生了解,感受直線和平面垂直的定義的形成過程;(2)探究判定直線與平面垂直的方法。二、教學(xué)重點(diǎn)、難點(diǎn)直線與平面垂直的定義和判定定
9、理的探究。三、教學(xué)設(shè)計(jì)(一)創(chuàng)設(shè)情景,揭示課題1、教師首先提出問題:在現(xiàn)實(shí)生活中,我們經(jīng)??吹揭恍┲本€與平面垂直的現(xiàn)象,例如:“旗桿與地面,大橋的橋柱和水面等的位置關(guān)系”,你能舉出一些類似的例子嗎?然后讓學(xué)生回憶、思考、討論、教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。2、接著教師指出:一條直線與一個(gè)平面垂直的意義是什么?并通過分析旗桿與它在地面上的射影的位置關(guān)系引出課題內(nèi)容。(二)研探新知1、為使學(xué)生學(xué)會(huì)從“感性認(rèn)識(shí)”到“理性認(rèn)識(shí)”過程中獲取新知,可再借助長(zhǎng)方體模型讓學(xué)生感知直線與平面的垂直關(guān)系。然后教師引導(dǎo)學(xué)生用“平面化”的思想來思考問題:從直線與直線垂直、直線與平面平行等的定義過程得到啟發(fā),能否用一條直線
10、垂直于一個(gè)平面內(nèi)的直線來定義這條直線與這個(gè)平面垂直呢?并組織學(xué)生交流討論,概括其定義。如果直線L與平面內(nèi)的任意一條直線都垂直,我們就說直線L與平面互相垂直,記作L,直線L叫做平面的垂線,平面叫做直線L的垂面。如圖2.3-1,直線與平面垂直時(shí),它們唯一公共點(diǎn)P叫做垂足。并對(duì)畫示表示進(jìn)行說明。 L p 圖2-3-12、老師提出問題,讓學(xué)生思考:(1)問題:雖然可以根據(jù)定義判定直線與平面垂直,但這種方法實(shí)際上難以實(shí)施。有沒有比較方便可行的方法來判斷直線和平面垂直呢?(2)師生活動(dòng):請(qǐng)同學(xué)們準(zhǔn)備一塊三角形的紙片,我們一起來做如圖2.3-2試驗(yàn):過ABC的頂點(diǎn)A翻折紙片,得到折痕AD,將翻折后的紙片豎起
11、放置在桌面上(BD、DC與桌面接觸),問如何翻折才能保證折痕AD與桌面所在平面垂直? A B D C圖2.3-2(3)歸納結(jié)論:引導(dǎo)學(xué)生根據(jù)直觀感知及已有經(jīng)驗(yàn)(兩條相交直線確定一個(gè)平面),進(jìn)行合情推理,獲得判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。老師特別強(qiáng)調(diào):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。(三)實(shí)際應(yīng)用,鞏固深化(1)課本P69例1教學(xué)(2)課本P69例2教學(xué)(四)歸納小結(jié),課后思考小結(jié):采用師生對(duì)話形式,完成下列問題:請(qǐng)歸納一下獲得直線與平面垂直的判定定理的基本過程。直線
12、與平面垂直的判定定理,體現(xiàn)的教學(xué)思想方法是什么?課后作業(yè):課本P70練習(xí)2求證:如果一條直線平行于一個(gè)平面,那么這個(gè)平面的任何垂線都和這條直線垂直。思考題:如果一條直線垂直于平面內(nèi)的無數(shù)條直線,那么這條直線就和這個(gè)平面垂直,這個(gè)結(jié)論對(duì)嗎?為什么?2.3.2平面與平面垂直的判定一、教學(xué)目標(biāo)1、知識(shí)與技能(1)使學(xué)生正確理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“兩個(gè)平面互相垂直”的概念;(2)使學(xué)生掌握兩個(gè)平面垂直的判定定理及其簡(jiǎn)單的應(yīng)用;(3)使學(xué)生理會(huì)“類比歸納”思想在數(shù)學(xué)問題解決上的作用。2、過程與方法(1)通過實(shí)例讓學(xué)生直觀感知“二面角”概念的形成過程;(2)類比已學(xué)知識(shí),
13、歸納“二面角”的度量方法及兩個(gè)平面垂直的判定定理。3、情態(tài)與價(jià)值通過揭示概念的形成、發(fā)展和應(yīng)用過程,使學(xué)生理會(huì)教學(xué)存在于觀實(shí)生活周圍,從中激發(fā)學(xué)生積極思維,培養(yǎng)學(xué)生的觀察、分析、解決問題能力。二、教學(xué)重點(diǎn)、難點(diǎn)。重點(diǎn):平面與平面垂直的判定;難點(diǎn):如何度量二面角的大小。三、學(xué)法與教學(xué)用具。1、學(xué)法:實(shí)物觀察,類比歸納,語言表達(dá)。2、教學(xué)用具:二面角模型(兩塊硬紙板)四、教學(xué)設(shè)計(jì)(一)創(chuàng)設(shè)情景,揭示課題問題1:平面幾何中“角”是怎樣定義的?問題2:在立體幾何中,“異面直線所成的角”、“直線和平面所成的角”又是怎樣定義的?它們有什么共同的特征?以上問題讓學(xué)生自由發(fā)言,教師再作小結(jié),并順勢(shì)拋出問題:在
14、生產(chǎn)實(shí)踐中,有許多問題要涉及到兩個(gè)平面相交所成的角的情形,你能舉出這個(gè)問題的一些例子嗎?如修水壩、發(fā)射人造衛(wèi)星等,而這樣的角有何特點(diǎn),該如何表示呢?下面我們共同來觀察,研探。(二)研探新知1、二面角的有關(guān)概念老師展示一張紙面,并對(duì)折讓學(xué)生觀察其狀,然后引導(dǎo)學(xué)生用數(shù)學(xué)思維思考,并對(duì)以上問題類比,歸納出二面角的概念及記法表示(如下表所示)角二面角圖形 A 邊 頂點(diǎn) O 邊 BA 梭 l B定義從平面內(nèi)一點(diǎn)出發(fā)的兩條射線(半直線)所組成的圖形從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形構(gòu)成射線 點(diǎn)(頂點(diǎn))一 射線半平面 一 線(棱)一 半平面表示AOB二面角-l-或-AB-2、二面角的度量二面角定理地反
15、映了兩個(gè)平面相交的位置關(guān)系,如我們常說“把門開大一些”,是指二面角大一些,那我們應(yīng)如何度量二兩角的大小呢?師生活動(dòng):師生共同做一個(gè)小實(shí)驗(yàn)(預(yù)先準(zhǔn)備好的二面角的模型)在其棱上位取一點(diǎn)為頂點(diǎn),在兩個(gè)半平面內(nèi)各作一射線(如圖2.3-3),通過實(shí)驗(yàn)操作,研探二面角大小的度量方法二面角的平面角。教師特別指出:(1)在表示二面角的平面角時(shí),要求“OAL” ,OBL;(2)AOB的大小與點(diǎn)O在L上位置無關(guān);(3)當(dāng)二面角的平面角是直角時(shí),這兩個(gè)平面的位置關(guān)系怎樣?承上啟下,引導(dǎo)學(xué)生觀察,類比、自主探究, B獲得兩個(gè)平面互相垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。 C O A(三)應(yīng)用舉
16、例,強(qiáng)化所學(xué) 例題:課本P.72例3 圖2.3-3做法:教師引導(dǎo)學(xué)生分析題意,先讓學(xué)生自己動(dòng)手推理證明,然后抽檢學(xué)生掌握情況,教師最后講評(píng)并板書證明過程。(四)運(yùn)用反饋,深化鞏固問題:課本P.73的探究問題做法:學(xué)生思考(或分組討論),老師與學(xué)生對(duì)話完成。(五)小結(jié)歸納,整體認(rèn)識(shí)(1)二面角以及平面角的有關(guān)概念;(2)兩個(gè)平面垂直的判定定理的內(nèi)容,它與直線與平面垂直的判定定理有何關(guān)系?(六)課后鞏固,拓展思維1、課后作業(yè):自二面角內(nèi)一點(diǎn)分別向兩個(gè)面引垂線,求證:它們所成的角與二兩角的平面角互補(bǔ)。2、課后思考問題:在表示二面角的平面角時(shí),為何要求“OAL、OBL”?為什么AOB 的大小與點(diǎn)O在L
17、上的位置無關(guān)?2、3.3直線與平面垂直的性質(zhì)2、3.4平面與平面垂直的性質(zhì)一、教學(xué)目標(biāo)1、知識(shí)與技能(1)使學(xué)生掌握直線與平面垂直,平面與平面垂直的性質(zhì)定理;(2)能運(yùn)用性質(zhì)定理解決一些簡(jiǎn)單問題;(3)了解直線與平面、平面與平面垂直的判定定理和性質(zhì)定理間的相互聯(lián)系。2、過程與方法(1)讓學(xué)生在觀察物體模型的基礎(chǔ)上,進(jìn)行操作確認(rèn),獲得對(duì)性質(zhì)定理正確性的認(rèn)識(shí);(2)性質(zhì)定理的推理論證。二、教學(xué)重點(diǎn)、難點(diǎn)兩個(gè)性質(zhì)定理的證明。三、學(xué)法與用具(1)學(xué)法:直觀感知、操作確認(rèn),猜想與證明。(2)用具:長(zhǎng)方體模型。四、教學(xué)設(shè)計(jì)(一)創(chuàng)設(shè)情景,揭示課題 問題:若一條直線與一個(gè)平面垂直,則可得到什么結(jié)論?若兩條直
18、線與同一個(gè)平面垂直呢?讓學(xué)生自由發(fā)言,教師不急于下結(jié)論,而是繼續(xù)引導(dǎo)學(xué)生:欲知結(jié)論怎樣,讓我們一起來觀察、研探。(自然進(jìn)入課題內(nèi)容)(二)研探新知1、操作確認(rèn)觀察長(zhǎng)方體模型中四條側(cè)棱與同一個(gè)底面的位置關(guān)系。如圖2.34,在長(zhǎng)方體ABCDA1B1C1D1中,棱AA1、BB1、CC1、DD1所在直線都垂直于平面ABCD,它們之間是有什么位置關(guān)系?(顯然互相平行)然后進(jìn)一步遷移活動(dòng):已知直線a 、b、那么直線a、b一定平行嗎?(一定)我們能否證明這一事實(shí)的正確性呢?C1D1ab A1B1DCAB圖2.3-4 圖2.3-52、推理證明引導(dǎo)學(xué)生分析性質(zhì)定理成立的條件,介紹證明性質(zhì)定理成立的特殊方法反證法
19、, 然后師生互動(dòng)共同完成該推理過程 ,最后歸納得出:垂直于同一個(gè)平面的兩條直線平行。(三)應(yīng)用鞏固 例子:課本P.74例4做法:教師給出問題,學(xué)生思考探究、判斷并說理由,教師最后評(píng)議。(四)類比拓展,研探新知 類比上面定理:若在兩個(gè)平面互相垂直的條件下,又會(huì)得出怎樣的結(jié)論呢?例如:如何在黑板面上畫一條與地面垂直的直線?引導(dǎo)學(xué)生觀察教室相鄰兩面墻的交線,容易發(fā)現(xiàn)該交線與地面垂直,這時(shí),只要在黑板上畫出一條與這交線平行的直線,則所畫直線必與地面垂直。然后師生互動(dòng),共同完成性質(zhì)定理的確認(rèn)與證明,并歸納性質(zhì)定理: 兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。(五)鞏固深化、發(fā)展思維 思
20、考1、設(shè)平面平面,點(diǎn)P在平面內(nèi),過點(diǎn)P作平面的垂線a,直線a與平面具有什么位置關(guān)系?(答:直線a必在平面內(nèi))思考2、已知平面、和直線a,若,a,a ,則直線a與平面具有什么位置關(guān)系?(六)歸納小結(jié),課后鞏固小結(jié):(1)請(qǐng)歸納一下本節(jié)學(xué)習(xí)了什么性質(zhì)定理,其內(nèi)容各是什么? (2)類比兩個(gè)性質(zhì)定理,你發(fā)現(xiàn)它們之間有何聯(lián)系?作業(yè):(1)求證:兩條異面直線不能同時(shí)和一個(gè)平面垂直; (2)求證:三個(gè)兩兩垂直的平面的交線兩兩垂直。本章小結(jié) 一、教學(xué)目標(biāo)1、知識(shí)與技能(1)使學(xué)生掌握知識(shí)結(jié)構(gòu)與聯(lián)系,進(jìn)一步鞏固、深化所學(xué)知識(shí);(2)通過對(duì)知識(shí)的梳理,提高學(xué)生的歸納知識(shí)和綜合運(yùn)用知識(shí)的能力。2、過程與方法利用框圖對(duì)本章知識(shí)進(jìn)行系統(tǒng)的小結(jié),直觀、簡(jiǎn)明再現(xiàn)所學(xué)知識(shí),化抽象學(xué)習(xí)為直觀
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度大型活動(dòng)廣告投放策略合同
- 2025年度地下綜合管廊工程勞務(wù)分包施工合同
- 2025年度葡萄酒莊園旅游合作開發(fā)合同
- 2025年度智能化家居裝修合同服務(wù)協(xié)議
- 2025年度新能源車輛充電站借款合同糾紛處理流程
- 2025年度兒童游樂場(chǎng)加盟管理合同范本
- 2025年度知識(shí)產(chǎn)權(quán)質(zhì)押貸款合同編寫指南
- 2025年度新能源項(xiàng)目過橋資金借款申請(qǐng)專項(xiàng)合同
- 2025年度冷鏈運(yùn)輸與醫(yī)藥電商合作合同
- 2025年度車輛租賃與廣告位合作合同范本
- 《游戲界面設(shè)計(jì)專題實(shí)踐》課件-知識(shí)點(diǎn)5:圖標(biāo)繪制準(zhǔn)備與繪制步驟
- 自動(dòng)扶梯安裝過程記錄
- MOOC 材料科學(xué)基礎(chǔ)-西安交通大學(xué) 中國(guó)大學(xué)慕課答案
- 智慧供熱管理系統(tǒng)方案可行性研究報(bào)告
- 帕金森病的言語康復(fù)治療
- 中國(guó)城市居民的健康意識(shí)和生活方式調(diào)研分析報(bào)告
- 上海星巴克員工手冊(cè)
- 貓狗創(chuàng)業(yè)計(jì)劃書
- 復(fù)產(chǎn)復(fù)工試題含答案
- 部編版語文三年級(jí)下冊(cè)第六單元大單元整體作業(yè)設(shè)計(jì)
- 售后服務(wù)經(jīng)理的競(jìng)聘演講
評(píng)論
0/150
提交評(píng)論