




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、-1-China University of Mining and Technology運(yùn)籌學(xué) -2-China University of Mining and Technology運(yùn)籌學(xué) 靈敏度分析靈敏度分析= =對(duì)于市場(chǎng)的變化,我們的決策究竟怎樣變化對(duì)于市場(chǎng)的變化,我們的決策究竟怎樣變化 (不需要將它當(dāng)成一個(gè)新問題)(不需要將它當(dāng)成一個(gè)新問題)靈敏度分析的重要性在于:靈敏度分析的重要性在于:1. 向決策者提供線性規(guī)劃問題的最優(yōu)解所能適應(yīng)的環(huán)境向決策者提供線性規(guī)劃問題的最優(yōu)解所能適應(yīng)的環(huán)境條件變化的范圍;條件變化的范圍;2. 環(huán)境條件變化時(shí)可能對(duì)經(jīng)營(yíng)狀況帶來何種影響;環(huán)境條件變化時(shí)可能對(duì)經(jīng)
2、營(yíng)狀況帶來何種影響;3. 產(chǎn)生影響后的解決途徑。產(chǎn)生影響后的解決途徑。靈敏度分析靈敏度分析-3-China University of Mining and Technology運(yùn)籌學(xué) 靈敏度分析的類型:靈敏度分析的類型:1. 模型中各個(gè)參數(shù)在什么范圍變化時(shí),最優(yōu)基不發(fā)生改變。模型中各個(gè)參數(shù)在什么范圍變化時(shí),最優(yōu)基不發(fā)生改變。2. 模型中參數(shù)變化已經(jīng)超出上述范圍時(shí),如何快速確定新的最模型中參數(shù)變化已經(jīng)超出上述范圍時(shí),如何快速確定新的最優(yōu)基和最優(yōu)解優(yōu)基和最優(yōu)解新的最優(yōu)決策方案。新的最優(yōu)決策方案。模型中參數(shù)變化主要指:模型中參數(shù)變化主要指:1. 目標(biāo)函數(shù)的系數(shù)變化;目標(biāo)函數(shù)的系數(shù)變化;2. 約束條
3、件右邊的值變化;約束條件右邊的值變化;3. 約束條件中約束條件中aij 的變化;的變化;4. 可決策變量增減的變化;可決策變量增減的變化;5. 約束條件增減的變化。約束條件增減的變化。 靈敏度分析靈敏度分析-4-China University of Mining and Technology運(yùn)籌學(xué) 靈敏度分析的任務(wù):靈敏度分析的任務(wù):1.當(dāng)系數(shù)當(dāng)系數(shù)A、b、C中的某個(gè)發(fā)生變化時(shí)中的某個(gè)發(fā)生變化時(shí),目前的最優(yōu)基是否仍最目前的最優(yōu)基是否仍最優(yōu)(即目前的最優(yōu)生產(chǎn)方案是否要變化)優(yōu)(即目前的最優(yōu)生產(chǎn)方案是否要變化)?(稱為模型參數(shù)的靈稱為模型參數(shù)的靈敏度分析敏度分析)2.增加一個(gè)變量或增加一個(gè)約束條
4、件時(shí),目前的最優(yōu)基是否仍增加一個(gè)變量或增加一個(gè)約束條件時(shí),目前的最優(yōu)基是否仍最優(yōu)(即目前的最優(yōu)生產(chǎn)方案是否要變化)?最優(yōu)(即目前的最優(yōu)生產(chǎn)方案是否要變化)?(稱為模型結(jié)構(gòu)稱為模型結(jié)構(gòu)的靈敏度分析的靈敏度分析) 靈敏度分析靈敏度分析-5-China University of Mining and Technology運(yùn)籌學(xué) 線性規(guī)劃問題線性規(guī)劃問題 I 表與表與 B 表的關(guān)系表的關(guān)系對(duì)給定符合典式的線性規(guī)劃問題中,初始基矩陣為對(duì)給定符合典式的線性規(guī)劃問題中,初始基矩陣為 I ,基變量為,基變量為 XS ,即松,即松弛變量。其對(duì)應(yīng)的初始單純形表如下:弛變量。其對(duì)應(yīng)的初始單純形表如下: I 表(初
5、始表)表(初始表)對(duì)初始單純形表進(jìn)行迭代之后得到對(duì)初始單純形表進(jìn)行迭代之后得到 B 為最優(yōu)基矩陣,最終典式所對(duì)應(yīng)的單純?yōu)樽顑?yōu)基矩陣,最終典式所對(duì)應(yīng)的單純形表:形表: B 表(最終表)表(最終表)基基解解 X XS XSb A I j C 0 基基解解 XB XN XS XBB -1b I B -1N B -1 j 0 CN CB B -1N - CB B -1 靈敏度分析靈敏度分析-6-China University of Mining and Technology運(yùn)籌學(xué) 原問題原問題對(duì)偶問題對(duì)偶問題結(jié)論或繼續(xù)計(jì)算的步驟結(jié)論或繼續(xù)計(jì)算的步驟可行解可行解可行解可行解非可行解非可行解非可行解非可
6、行解可行解可行解非可行解非可行解可行解可行解非可行解非可行解問題的最優(yōu)解或最優(yōu)基不變問題的最優(yōu)解或最優(yōu)基不變可以用單純形法繼續(xù)迭代求最優(yōu)解可以用單純形法繼續(xù)迭代求最優(yōu)解可以用對(duì)偶單純形法繼續(xù)迭代求最優(yōu)解可以用對(duì)偶單純形法繼續(xù)迭代求最優(yōu)解引進(jìn)人工變量,編制新的單純形表重新計(jì)算引進(jìn)人工變量,編制新的單純形表重新計(jì)算線性規(guī)劃原問題單純形法對(duì)應(yīng)的線性規(guī)劃原問題單純形法對(duì)應(yīng)的 I 表表中中參數(shù)的變化將引起參數(shù)的變化將引起B(yǎng) 表表中中對(duì)應(yīng)對(duì)應(yīng)參數(shù)的變化情況如下:參數(shù)的變化情況如下:靈敏度分析靈敏度分析基基解解X XS XSbA I j C 0 基基解解XB XN XS XBB -1b I B -1N B
7、-1 j 0 CN CB B -1N - CB B -1 I 表(初始表)表(初始表)B 表(最終表)表(最終表)-7-China University of Mining and Technology運(yùn)籌學(xué) 靈敏度分析的方法:靈敏度分析的方法: 靈敏度分析方法的關(guān)鍵是從單純形法對(duì)應(yīng)的靈敏度分析方法的關(guān)鍵是從單純形法對(duì)應(yīng)的 I 表表中中參參數(shù)的變化來分析數(shù)的變化來分析B 表表中中對(duì)應(yīng)參數(shù)的變化情況來回答決策者對(duì)應(yīng)參數(shù)的變化情況來回答決策者所關(guān)心問題。所關(guān)心問題。 靈敏度分析的方法是在目前最優(yōu)基靈敏度分析的方法是在目前最優(yōu)基B下進(jìn)行的。即當(dāng)下進(jìn)行的。即當(dāng)參數(shù)參數(shù)A、b、c中的某一個(gè)或幾個(gè)發(fā)生變化
8、時(shí),考察是否影中的某一個(gè)或幾個(gè)發(fā)生變化時(shí),考察是否影響以下兩式的成立?響以下兩式的成立? 0011ABCCbBB靈敏度分析靈敏度分析-8-China University of Mining and Technology運(yùn)籌學(xué) 1. 對(duì)于參數(shù)對(duì)于參數(shù)b的靈敏度分析的靈敏度分析基基解解 XB XN XS XSb B N I j CB CN 0基基解解 XB XN XS XBB-1b I B -1N B -1 j 0 CN CB B -1 - CB B -1I 表表B 表表當(dāng)當(dāng)I 表表中中b變化為變化為b時(shí),在時(shí),在B 表中將只有解列表中將只有解列 B-1b發(fā)生變化。發(fā)生變化。靈敏度分析靈敏度分析
9、-9-China University of Mining and Technology運(yùn)籌學(xué) bXXBB-1bB-1AZC BB-1bC-C BB-1Ab變化的時(shí)候,僅對(duì)變化的時(shí)候,僅對(duì)B-1b有影響有影響僅關(guān)心僅關(guān)心B-1b0?若新的若新的B-1b不滿足不滿足0,最優(yōu)基發(fā)生,最優(yōu)基發(fā)生變化,此時(shí)需用對(duì)偶單純形法進(jìn)行變化,此時(shí)需用對(duì)偶單純形法進(jìn)行計(jì)算,調(diào)整可行性可能計(jì)算,調(diào)整可行性可能當(dāng)當(dāng)B-1b0時(shí),最優(yōu)基不變(即時(shí),最優(yōu)基不變(即生產(chǎn)產(chǎn)品的品種不變,但數(shù)量生產(chǎn)產(chǎn)品的品種不變,但數(shù)量及最優(yōu)值會(huì)變化),此時(shí)可以及最優(yōu)值會(huì)變化),此時(shí)可以簡(jiǎn)單求出新最優(yōu)解。簡(jiǎn)單求出新最優(yōu)解。所以,所以,b的變化
10、只影響最優(yōu)解的變化和最優(yōu)值的變化。的變化只影響最優(yōu)解的變化和最優(yōu)值的變化。靈敏度分析靈敏度分析-10-China University of Mining and Technology運(yùn)籌學(xué) 若若B-1b0,其是一個(gè)不等式組,從中可以解得,其是一個(gè)不等式組,從中可以解得b的變化范圍的變化范圍(此時(shí),需保證當(dāng)前最優(yōu)基變化后仍為最優(yōu)基)(此時(shí),需保證當(dāng)前最優(yōu)基變化后仍為最優(yōu)基)若若B-1b中有小于中有小于0的分量,則需用對(duì)偶單純形法迭代,以求出的分量,則需用對(duì)偶單純形法迭代,以求出新的最優(yōu)方案新的最優(yōu)方案。(此時(shí),基變量不變,因?yàn)榛兞恐恍枰鄳?yīng)的(此時(shí),基變量不變,因?yàn)榛兞恐恍枰鄳?yīng)的B可可逆
11、就可以了)逆就可以了)bXXBB-1bB-1AZC BB-1bC-C BB-1A 0011ABCCbBB靈敏度分析靈敏度分析-11-China University of Mining and Technology運(yùn)籌學(xué) I 表表Cj21000CB基基解解X1X2X3X4X50X315051000X424620100X5511001檢驗(yàn)數(shù)檢驗(yàn)數(shù) j21000B 表表Cj21000CB基基解解X1X2X3X4X50X315/20015/4-15/22X17/21001/4-1/21X23/2010-1/43/2檢驗(yàn)數(shù)檢驗(yàn)數(shù) j000-1/4-1/2靈敏度分析靈敏度分析-12-China Univ
12、ersity of Mining and Technology運(yùn)籌學(xué) 若若b2增加到增加到30,最優(yōu)解如何變化?,最優(yōu)解如何變化? 53015b 2/34/102/14/102/154/511B00515530152/34/102/14/102/154/511 bB最優(yōu)基不變,最優(yōu)解變?yōu)椋ㄗ顑?yōu)基不變,最優(yōu)解變?yōu)椋?,0,15,0,0)。)。靈敏度分析靈敏度分析-13-China University of Mining and Technology運(yùn)籌學(xué) I 表表Cj21000CB基基解解X1X2X3X4X50X315051000X424620100X5511001檢驗(yàn)數(shù)檢驗(yàn)數(shù) j21000B
13、 表表Cj21000CB基基解解X1X2X3X4X50X315/20015/4-15/22X17/21001/4-1/21X23/2010-1/43/2檢驗(yàn)數(shù)檢驗(yàn)數(shù) j000-1/4-1/2靈敏度分析靈敏度分析-14-China University of Mining and Technology運(yùn)籌學(xué) 若若b2增加到增加到32,最優(yōu)解如何變化?,最優(yōu)解如何變化? 53215b 2/34/102/14/102/154/511B02/12/112/35532152/34/102/14/102/154/511 bB最優(yōu)基發(fā)生變化,用對(duì)偶單純形法求解。最優(yōu)基發(fā)生變化,用對(duì)偶單純形法求解。靈敏度分析
14、靈敏度分析-15-China University of Mining and Technology運(yùn)籌學(xué) B 表表Cj21000CB基基解解X1X2X3X4X50X315051002X15110010X420-401-6檢驗(yàn)數(shù)檢驗(yàn)數(shù) j0-100-2B 表表Cj21000CB基基解解X1X2X3X4X50X335/20015/4-15/22X111/21001/4-1/21X2-1/2010-1/43/2檢驗(yàn)數(shù)檢驗(yàn)數(shù) j000-1/4-1/2靈敏度分析靈敏度分析-16-China University of Mining and Technology運(yùn)籌學(xué) 已知某生產(chǎn)計(jì)劃問題的數(shù)學(xué)模型,為使
15、最優(yōu)方案不變,已知某生產(chǎn)計(jì)劃問題的數(shù)學(xué)模型,為使最優(yōu)方案不變,試討論第二個(gè)約束條件試討論第二個(gè)約束條件b2的變化范圍。的變化范圍。 0,)(2623)(2432.34max21212121xxxxxxtsxxZ工工時(shí)時(shí)約約束束材材料料約約束束 cj 4 3 0 0 CBXBb x1 x2 x3 x4 34x2x146 0 1 3/5 -2/5 1 0 -2/5 3/5 Z36 0 0 1/5 6/5 解:生產(chǎn)計(jì)劃問題的數(shù)學(xué)模型和最優(yōu)單純形表為:解:生產(chǎn)計(jì)劃問題的數(shù)學(xué)模型和最優(yōu)單純形表為:靈敏度分析靈敏度分析-17-China University of Mining and Technolog
16、y運(yùn)籌學(xué) 從矩陣形式的單純形表中可知,從矩陣形式的單純形表中可知,b2的變化只影響解的可行性的變化只影響解的可行性B-1b0,因此,為使最優(yōu)解不變,只需變化以后的,因此,為使最優(yōu)解不變,只需變化以后的B-1b0即可。即可。05354852572245/35/25/25/32221 bbbbB 05354805257222bb由由解得:解得:36162 b當(dāng)數(shù)據(jù)量十分當(dāng)數(shù)據(jù)量十分大的時(shí)候,十大的時(shí)候,十分麻煩分麻煩寫為寫為B-1(24,26)+B-1b靈敏度分析靈敏度分析-18-China University of Mining and Technology運(yùn)籌學(xué) 若若b2變化超過范圍,則需用
17、對(duì)偶單純形法進(jìn)行求解。如變化超過范圍,則需用對(duì)偶單純形法進(jìn)行求解。如b2=6,則則06126245/35/25/25/31 bB 12612431 bBCB cj 4 3 0 0 CBXBb x1 x2 x3 x4 34x2x112-6 0 1 3/5 -2/5 1 0 -2/5 3/5 Z12 0 0 1/5 6/5 將上述數(shù)字替換最優(yōu)單純形表中相應(yīng)位置的數(shù)據(jù)得:將上述數(shù)字替換最優(yōu)單純形表中相應(yīng)位置的數(shù)據(jù)得:靈敏度分析靈敏度分析-19-China University of Mining and Technology運(yùn)籌學(xué) cj 4 3 0 0 CBXBb x1 x2 x3 x4 30 x2
18、x3315 3/2 1 0 1/2 -5/2 0 1 -3/2 Z9 1/2 0 0 3/2 用對(duì)偶單純形法迭代,求出的最優(yōu)單純形表如下:用對(duì)偶單純形法迭代,求出的最優(yōu)單純形表如下:得到新的最優(yōu)解為:得到新的最優(yōu)解為:x1=0,x2=3; max z=9靈敏度分析靈敏度分析-20-China University of Mining and Technology運(yùn)籌學(xué) 當(dāng)當(dāng) Cj 是非基變量是非基變量 X 的價(jià)值系數(shù)的價(jià)值系數(shù)時(shí),若要保持最優(yōu)解(或基)不時(shí),若要保持最優(yōu)解(或基)不變,則必須滿足:變,則必須滿足:CN CB B -1N 0基基 解解 XB XN XS XSb B N I j C
19、B CN 0基基解解 XB XN XS XBB -1b I B -1N B -1 j 0 CN CB B -1N - CB B -1I 表表B 表表2.對(duì)價(jià)值系數(shù)對(duì)價(jià)值系數(shù)Cj變化的分析變化的分析(1)當(dāng)當(dāng) Cj 變化使得非基變變化使得非基變量的量的Cj Zj 0,即最,即最優(yōu)解(或基)發(fā)生變優(yōu)解(或基)發(fā)生變化,則在原單純形化,則在原單純形B表表的基礎(chǔ)上,繼續(xù)求解的基礎(chǔ)上,繼續(xù)求解模型。模型。靈敏度分析靈敏度分析-21-China University of Mining and Technology運(yùn)籌學(xué) max z = 2x1 + x2 5x2 15s.t. 6x1 + 2x2 24 x
20、1 + x2 5 x1 ,x2 0I 表表Cj21000CB基基解解X1X2X3X4X50X315051000X424620100X5511001檢驗(yàn)數(shù)檢驗(yàn)數(shù) j21000靈敏度分析靈敏度分析-22-China University of Mining and Technology運(yùn)籌學(xué) B 表表Cj21000CB基基解解X1X2X3X4X50X315/20015/4-15/22X17/21001/4-1/21X23/2010-1/43/2檢驗(yàn)數(shù)檢驗(yàn)數(shù) j000-1/4-1/2B 表表CjC11000CB基基解解X1X2X3X4X50X315/20015/4-15/2C1X17/21001/4
21、-1/21X23/2010-1/43/2檢驗(yàn)數(shù)檢驗(yàn)數(shù) j0001/4-C1/4C1/2-3/2若要使最優(yōu)解保持不變,求若要使最優(yōu)解保持不變,求x1的價(jià)值系數(shù)變化范圍。的價(jià)值系數(shù)變化范圍。 02/ )3(04/ )1(11CC311 C靈敏度分析靈敏度分析-23-China University of Mining and Technology運(yùn)籌學(xué) 因此:因此:當(dāng)當(dāng)CN(非基變量的目標(biāo)函數(shù)系數(shù))中某個(gè)(非基變量的目標(biāo)函數(shù)系數(shù))中某個(gè)Cj發(fā)生變化時(shí),發(fā)生變化時(shí),只影響到非基變量只影響到非基變量xj的檢驗(yàn)數(shù)的檢驗(yàn)數(shù)jjjjjBjCCCPBC )()(1 最優(yōu)解改變,需要用單純形法重新進(jìn)行迭代,以最
22、優(yōu)解改變,需要用單純形法重新進(jìn)行迭代,以求得新的最優(yōu)解。求得新的最優(yōu)解。0 j 最優(yōu)解不變(最小值)最優(yōu)解不變(最小值)0 j jjC 靈敏度分析靈敏度分析-24-China University of Mining and Technology運(yùn)籌學(xué) 對(duì)于下列線性規(guī)劃模型對(duì)于下列線性規(guī)劃模型,為使最優(yōu)解不變,討論非基變量為使最優(yōu)解不變,討論非基變量y1的目標(biāo)函數(shù)系數(shù)的目標(biāo)函數(shù)系數(shù)c3的變化范圍。的變化范圍。 0,)(26223)(2432.234max21121121121xxyxxyxxtsyxxZ工工時(shí)時(shí)約約束束材材料料約約束束用單純形法求得其最優(yōu)表為:用單純形法求得其最優(yōu)表為: cj
23、4 3 2 0 0 CBXBb x1 x2 y1 x3 x4 34x2x146 0 1 -1/5 3/5 -2/5 1 0 4/5 -2/5 3/5 Z36 0 0 -3/5 -1/5 -6/5 靈敏度分析靈敏度分析-25-China University of Mining and Technology運(yùn)籌學(xué) 解:因?yàn)榻猓阂驗(yàn)閥1為非基變量,其目標(biāo)函數(shù)系數(shù)為非基變量,其目標(biāo)函數(shù)系數(shù)c3的變化只會(huì)影響到的變化只會(huì)影響到y(tǒng)1的檢驗(yàn)數(shù),因此為使最優(yōu)解不變,只需的檢驗(yàn)數(shù),因此為使最優(yōu)解不變,只需03 即即5/135/323 C若若C3=3,則,則523 代入最優(yōu)單純形表中相應(yīng)位置代入最優(yōu)單純形表中相
24、應(yīng)位置繼續(xù)迭代以求出新的最優(yōu)解。繼續(xù)迭代以求出新的最優(yōu)解。 cj4 3 2 0 0 CBXBbx1 x2 y1 x3 x4 34x2x146 0 1 -1/5 3/5 -2/5 1 0 4/5 -2/5 3/5 Z36 0 0 -2/5 1/5 6/5 靈敏度分析靈敏度分析-26-China University of Mining and Technology運(yùn)籌學(xué) 當(dāng)當(dāng) Cj 變化使得非基變變化使得非基變量的量的Cj Zj 0,即最,即最優(yōu)解(或基)發(fā)生變優(yōu)解(或基)發(fā)生變化,則在原單純形表化,則在原單純形表的基礎(chǔ)上,繼續(xù)求解的基礎(chǔ)上,繼續(xù)求解模型。模型。當(dāng)當(dāng) Ci 是基變量是基變量 Xi
25、 的目標(biāo)系數(shù)的目標(biāo)系數(shù)時(shí),若要保持最優(yōu)解(或基)時(shí),若要保持最優(yōu)解(或基)不變,則必須滿足:不變,則必須滿足:CN CB B 1N 0 - CB B -1 0基基解解 XB XN XS XSb B N I j CB CN 0基基解解 XB XN XS XBB -1b I B -1N B -1 j 0 CN CB B -1N - CB B -1I 表表B 表表2.對(duì)價(jià)值系數(shù)對(duì)價(jià)值系數(shù)Cj變化的分析變化的分析(2)靈敏度分析靈敏度分析-27-China University of Mining and Technology運(yùn)籌學(xué) 0-1 ABCCB的的范范圍圍就就可可得得到到j(luò)C 在上題中,設(shè)基變
26、量在上題中,設(shè)基變量x1的系數(shù)的系數(shù)C1變化為變化為C1+C1 ,在最優(yōu)性不,在最優(yōu)性不變的條件下,試確定變的條件下,試確定C1的范圍的范圍解:解: 00345/35/2015/25/31043111CCCABCB 003453565251341111CCCC 因此:因此:當(dāng)當(dāng)CB(基變量的目標(biāo)函數(shù)系數(shù))中某個(gè)(基變量的目標(biāo)函數(shù)系數(shù))中某個(gè)Cj發(fā)生變化時(shí),會(huì)影響發(fā)生變化時(shí),會(huì)影響到所有變量的檢驗(yàn)數(shù),解不等式組到所有變量的檢驗(yàn)數(shù),解不等式組靈敏度分析靈敏度分析-28-China University of Mining and Technology運(yùn)籌學(xué) 0535652510011 CC5 .
27、4221205356052511111 CCCC即即42636585100, 51111 CbBCCABCCBB則則若若將上述數(shù)字替換單純形表中相應(yīng)位置的數(shù)字得:將上述數(shù)字替換單純形表中相應(yīng)位置的數(shù)字得: cj 4 3 0 0 CBXBb x1 x2 x3 x4 35x2x146 0 1 3/5 -2/5 1 0 -2/5 3/5 Z42 0 0 -1/5 8/5 靈敏度分析靈敏度分析-29-China University of Mining and Technology運(yùn)籌學(xué) 用單純形法迭代得最優(yōu)解表如下:用單純形法迭代得最優(yōu)解表如下: cj 4 3 0 0 CBXBb x1 x2 x3
28、x4 05x3x120/326/3 0 5/3 1 -2/3 1 2/3 0 1/3 Z130/3 0 1/3 0 16/15 靈敏度分析靈敏度分析-30-China University of Mining and Technology運(yùn)籌學(xué) 第一種情況(當(dāng)?shù)谝环N情況(當(dāng)j JN):即):即aij為非基變量為非基變量xj的技術(shù)系數(shù)時(shí),它的變的技術(shù)系數(shù)時(shí),它的變化只影響化只影響xj的系數(shù)列的系數(shù)列B-1Pj和檢驗(yàn)數(shù)和檢驗(yàn)數(shù)j,為使最優(yōu)方案不變,只需,為使最優(yōu)方案不變,只需j =0。3.對(duì)技術(shù)系數(shù)對(duì)技術(shù)系數(shù)aij變化的分析變化的分析第二種情況(當(dāng)?shù)诙N情況(當(dāng)j JB):由于):由于B中元素的改
29、變影響到中元素的改變影響到B-1的變化,的變化,因此也影響到整個(gè)單純形表因此也影響到整個(gè)單純形表T(B)的變化。目前的基的變化。目前的基B對(duì)應(yīng)的解有對(duì)應(yīng)的解有可能既不是原始可行,也不是對(duì)偶可行。于是不如重新求解。可能既不是原始可行,也不是對(duì)偶可行。于是不如重新求解。靈敏度分析靈敏度分析-31-China University of Mining and Technology運(yùn)籌學(xué) 0,)(26223)(2432.234max21121121121xxyxxyxxtsyxxZ工工時(shí)時(shí)約約束束材材料料約約束束 cj 4 3 2 0 0 CBXBb x1 x2 y1 x3 x4 34x2x146 0
30、 1 -1/5 3/5 -2/5 1 0 4/5 -2/5 3/5 Z36 0 0 3/5 1/5 6/5 對(duì)于下列規(guī)劃問題的最優(yōu)解,若由于工藝改進(jìn),對(duì)于下列規(guī)劃問題的最優(yōu)解,若由于工藝改進(jìn),y1的技術(shù)系數(shù)改為的技術(shù)系數(shù)改為p3=(1,1)T,試討論最優(yōu)解的變化。,試討論最優(yōu)解的變化。解:解: 532115/65/13313 CPBCB 最優(yōu)解改變。此時(shí)其系數(shù)列改為:最優(yōu)解改變。此時(shí)其系數(shù)列改為:靈敏度分析靈敏度分析-32-China University of Mining and Technology運(yùn)籌學(xué) 5/15/1115/35/25/25/331PB將上述數(shù)據(jù)替換最優(yōu)表中相應(yīng)位置的數(shù)
31、據(jù),然后再用單純形法將上述數(shù)據(jù)替換最優(yōu)表中相應(yīng)位置的數(shù)據(jù),然后再用單純形法求得新的最優(yōu)解。求得新的最優(yōu)解。 cj 4 3 2 0 0 CBXBb x1 x2 y1 x3 x4 34x2x146 0 1 1/5 3/5 -2/5 1 0 1/5 -2/5 3/5 Z36 0 0 -3/5 1/5 6/5 靈敏度分析靈敏度分析-33-China University of Mining and Technology運(yùn)籌學(xué) 設(shè)某企業(yè)在計(jì)劃期內(nèi),擬議生產(chǎn)新產(chǎn)品設(shè)某企業(yè)在計(jì)劃期內(nèi),擬議生產(chǎn)新產(chǎn)品Xn+1,并已知新產(chǎn)品的,并已知新產(chǎn)品的單位利潤(rùn)為單位利潤(rùn)為Cn+1,消耗系數(shù)向量為,消耗系數(shù)向量為Pn+1=
32、(a1,n+1,a2,n+1,am,n+1)T,此,此時(shí)應(yīng)如何分析才能確定該新產(chǎn)品是否值得投產(chǎn)?時(shí)應(yīng)如何分析才能確定該新產(chǎn)品是否值得投產(chǎn)? 增加新產(chǎn)品應(yīng)在不影響企業(yè)目前計(jì)劃期內(nèi)最優(yōu)生產(chǎn)的前提下增加新產(chǎn)品應(yīng)在不影響企業(yè)目前計(jì)劃期內(nèi)最優(yōu)生產(chǎn)的前提下進(jìn)行。因此可從現(xiàn)行的最優(yōu)基進(jìn)行。因此可從現(xiàn)行的最優(yōu)基B出發(fā)考慮:出發(fā)考慮:若若n+1=CBB-1Pn+1Cn+10,則不應(yīng)投入則不應(yīng)投入。 即新產(chǎn)品的機(jī)會(huì)成本小于目前的市場(chǎng)價(jià)格時(shí),應(yīng)投產(chǎn)否則不即新產(chǎn)品的機(jī)會(huì)成本小于目前的市場(chǎng)價(jià)格時(shí),應(yīng)投產(chǎn)否則不應(yīng)投產(chǎn)。應(yīng)投產(chǎn)。4.對(duì)增加新產(chǎn)品的分析對(duì)增加新產(chǎn)品的分析靈敏度分析靈敏度分析-34-China Universi
33、ty of Mining and Technology運(yùn)籌學(xué) 現(xiàn)有一新產(chǎn)品丙,經(jīng)預(yù)測(cè)其單位利潤(rùn)為現(xiàn)有一新產(chǎn)品丙,經(jīng)預(yù)測(cè)其單位利潤(rùn)為3,技術(shù)消,技術(shù)消耗系數(shù)為耗系數(shù)為P5=(2,2)T,問該產(chǎn)品是否值得投產(chǎn)?,問該產(chǎn)品是否值得投產(chǎn)?解:解:5/1322)5/65/1(5515 CPBCB 值得投產(chǎn)。值得投產(chǎn)。其系數(shù)列為:其系數(shù)列為: 5252225253535251PB靈敏度分析靈敏度分析-35-China University of Mining and Technology運(yùn)籌學(xué) cj 4 3 0 0 3CBXBb x1 x2 x3 x4 y5 34x2x146 0 1 3/5 -2/5 2/5 1 0 -2/5 3/5 2/5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)鐵氧體軟磁市場(chǎng)競(jìng)爭(zhēng)狀況分析及投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國(guó)重晶石市場(chǎng)運(yùn)行狀況及前景趨勢(shì)分析報(bào)告
- 2025-2030年中國(guó)連接器制造市場(chǎng)發(fā)展趨勢(shì)與十三五規(guī)劃研究報(bào)告
- 2025-2030年中國(guó)超級(jí)活性炭行業(yè)市場(chǎng)運(yùn)行動(dòng)態(tài)及前景規(guī)模分析報(bào)告
- 2025-2030年中國(guó)臍橙行業(yè)運(yùn)行狀況及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2025-2030年中國(guó)羊藿苷提取物行業(yè)發(fā)展?fàn)顩r規(guī)劃研究報(bào)告
- 2025上海市建筑安全員《A證》考試題庫(kù)及答案
- 2025-2030年中國(guó)電網(wǎng)企業(yè)信息化市場(chǎng)運(yùn)營(yíng)現(xiàn)狀及發(fā)展規(guī)劃分析報(bào)告
- 恩施職業(yè)技術(shù)學(xué)院《行政案例研習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷
- 長(zhǎng)沙文創(chuàng)藝術(shù)職業(yè)學(xué)院《地球物理學(xué)導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷
- 綿陽(yáng)市高中2022級(jí)(2025屆)高三第二次診斷性考試(二診)語(yǔ)文試卷(含答案)
- 常州初三強(qiáng)基數(shù)學(xué)試卷
- 《吞咽障礙膳食營(yíng)養(yǎng)管理規(guī)范》(T-CNSS 013-2021)
- 《經(jīng)濟(jì)學(xué)的研究方法》課件
- 仁愛七年級(jí)下冊(cè)英語(yǔ)教學(xué)計(jì)劃
- 躁狂的健康宣教
- 第四講國(guó)防動(dòng)員準(zhǔn)備
- 四川省成都市2025屆高三一診考試英語(yǔ)試卷含解析
- 2024年度房地產(chǎn)開發(fā)項(xiàng)目安全生產(chǎn)委托管理協(xié)議范本3篇
- 飛機(jī)空氣動(dòng)力學(xué)課件:翼型的空氣動(dòng)力特性
- 2025屆河南省鄭州市外國(guó)語(yǔ)學(xué)校高考數(shù)學(xué)三模試卷含解析
評(píng)論
0/150
提交評(píng)論