




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、 1、過兩點(diǎn)有且只有一條直線 2、兩點(diǎn)之間線段最短 3、同角或等角的補(bǔ)角相等 4、同角或等角的余角相等5、過一點(diǎn)有且只有一條直線和已知直線垂直 6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短 7、平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行 8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9、同位角相等,兩直線平行10、內(nèi)錯(cuò)角相等,兩直線平行 11、同旁內(nèi)角互補(bǔ),兩直線平行 12、兩直線平行,同位角相等13、兩直線平行,內(nèi)錯(cuò)角相等
2、 14、兩直線平行,同旁內(nèi)角互補(bǔ) 15、定理 三角形兩邊的和大于第三邊 16、推論 三角形兩邊的差小于第三邊 17、三角形內(nèi)角和定理 三角形三個(gè)內(nèi)角的和等于180° 18、推論1 直角三角形的兩個(gè)銳角互余 19、推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 20、推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角 21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22、邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等
3、的 兩個(gè)三角形全等 24、推論(AAS) 有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等 25、邊邊邊公理(SSS) 有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等 26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等 27、定理1 在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等 28、定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上 29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合30、等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對(duì)等角)31、推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
4、;32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33、推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60° 34、等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊) 35、推論1 三個(gè)角都相等的三角形是等邊三角形 36、推論 2 有一個(gè)角等于60°的等腰三角形是等邊三角形 37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半 38、直角三角形斜邊上的中線等于斜邊上的一半 39、定理 線段垂直平分線上的點(diǎn)和這條線
5、段兩個(gè)端點(diǎn)的距離相等 40、逆定理 和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合 42、定理1 關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形 43、定理 2 如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線44、定理3 兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上 45、逆定理 如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱 46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c
6、2 47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形 48、定理 四邊形的內(nèi)角和等于360°49、四邊形的外角和等于360° 50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180° 51、推論 任意多邊的外角和等于360° 52、平行四邊形性質(zhì)定理1 平行四邊形的對(duì)角相等 53、平行四邊形性質(zhì)定理2 平行四邊形的對(duì)邊相等 54、推論 夾在兩條平行線間的平行線段相等55、平行四邊形性質(zhì)定理3 平行四邊形的對(duì)角線互相
7、平分 56、平行四邊形判定定理1 兩組對(duì)角分別相等的四邊形是平行四邊形 57、平行四邊形判定定理2 兩組對(duì)邊分別相等的四邊 形是平行四邊形 58、平行四邊形判定定理3 對(duì)角線互相平分的四邊形是平行四邊形 59、平行四邊形判定定理4 一組對(duì)邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角61、矩形性質(zhì)定理2 矩形的對(duì)角線相等62、矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63、矩形判定定理2 對(duì)角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1 菱形的四條邊都相等 65、菱形性質(zhì)定理2 菱
8、形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2 67、菱形判定定理1 四邊都相等的四邊形是菱形 68、菱形判定定理2 對(duì)角線互相垂直的平行四邊形是菱形 69、正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等 70、正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角 71、定理1 關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的 72、定理2 關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分 73、逆定理 如果兩個(gè)
9、圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱 74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對(duì)角線相等 76、等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯 形是等腰梯形 77、對(duì)角線相等的梯形是等腰梯形 78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 79、推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰 80、推論2 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
10、;81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h 83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d 84、(2)合比性質(zhì):如果ab=cd,那么(a±b)b=(c±d)d 85、(3)等比性質(zhì):如果ab=cd=mn(b+d+n0),那么(a+c+m)(b+d+n)=ab
11、160;86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例 87、推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對(duì)應(yīng)線段成比例88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89、平行于三角形的一邊,并且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例 90、定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似 91、相似三角形判定定理1
12、; 兩角對(duì)應(yīng)相等,兩三角形相似(ASA) 92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93、判定定理2 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS) 94、判定定理3 三邊對(duì)應(yīng)成比例,兩三角形相似(SSS) 95、定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似 96、性質(zhì)定理1 相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比 97、性質(zhì)定理2 相似三角形周長的比等于相似比
13、0;98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方 99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值 100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值 101、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合 102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104、同圓或等圓的半徑相等 105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓 106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)
14、的軌跡,是著條線段的垂直平分線 107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線 108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線 109、定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧 111、推論1 平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧 平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112、推論2 圓的兩條平行弦所夾的弧相等 113
15、、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形 114、定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等 115、推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等 116、定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半 117、推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等 118、推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑 119、推論3 如果三角形一邊上的中線等于
16、這邊的一半,那么這個(gè)三角形是直角三角形 120、定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角121、直線L和O相交 dr 直線L和O相切 d=r 直線L和O相離 dr 122、切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑 124、推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn) 125、推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心 126、切線長定理 從圓
17、外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角 127、圓的外切四邊形的兩組對(duì)邊的和相等 128、弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角 129、推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130、相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等 131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng) 132、切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng) 133、推論 從圓外一點(diǎn)引圓的兩條割線,這
18、一點(diǎn)到每條 割線與圓的交點(diǎn)的兩條線段長的積相等 134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135、兩圓外離 dR+r 兩圓外切 d=R+r 兩圓相交 R-rdR+r(Rr) 兩圓內(nèi)切 d=R-r(Rr) 兩圓內(nèi)含 dR-r(Rr) 136、定理 相交兩圓的連心線垂直平分兩圓的公共弦 137、定理 把圓分成n(n3): 依次連結(jié)各分點(diǎn)所
19、得的多邊形是這個(gè)圓的內(nèi)接正n邊形 經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138、定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°n 140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141、正n邊形的面積Sn=pnrn2 p表示正n邊形的周長 142、正三角形面積3a4 a表示邊長 143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n
20、邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°n=360°化為(n-2)(k-2)=4 144、弧長計(jì)算公式:L=n兀R180 145、扇形面積公式:S扇形=n兀R2360=LR2 146、內(nèi)公切線長= d-(R-r) 外公切線長= d-(R+r)正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圓半徑余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角四、基本方法配方法所謂配方,就是
21、把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。2、因式分解法 因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利
22、用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。3、換元法 換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來的式子,使它簡化,使問題易于解決。4、判別式法與韋達(dá)定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡單應(yīng)
23、用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。5、待定系數(shù)法在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。6、構(gòu)造法在解題時(shí),我們常常會(huì)采用這樣的方法,通過對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方
24、法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。7、反證法反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于
25、、不大(小)于;都是、不都是;至少有一個(gè)、一個(gè)也沒有;至少有n個(gè)、至多有(n一1)個(gè);至多有一個(gè)、至少有兩個(gè);唯一、至少有兩個(gè)。歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。8、面積法平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾
26、何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利
27、于對(duì)圖形本質(zhì)的認(rèn)識(shí)。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。10、客觀性題的解題方法選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實(shí)例介紹常用方法。 (1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 戶口信息更改授權(quán)書3篇
- 廣告行業(yè)創(chuàng)意勞動(dòng)合同范本2篇
- 地磅購銷合約3篇
- 住宅質(zhì)量保證書樣本合輯3篇
- 銷售工作個(gè)人總結(jié)(28篇)
- 代收房產(chǎn)委托書3篇
- 新教師職稱工作總結(jié)8篇
- 婚內(nèi)財(cái)產(chǎn)的協(xié)議書3篇
- 協(xié)商致解除勞務(wù)合同3篇
- 買房委托書格式怎么寫3篇
- (二模)濟(jì)寧市2025年4月高考模擬考試地理試卷
- 首都醫(yī)科大學(xué)附屬北京安貞醫(yī)院招聘考試真題2024
- 抽化糞池合同協(xié)議
- 中醫(yī)養(yǎng)生館運(yùn)營方案中醫(yī)養(yǎng)生館策劃書
- (二模)寧波市2024-2025學(xué)年第二學(xué)期高考模擬考試 英語試卷(含答案)+聽力音頻+聽力原文
- 高考備考:100個(gè)高考??家族e(cuò)的文言實(shí)詞(翻譯+正誤辨析)
- 軟件項(xiàng)目交付管理制度
- 知識(shí)產(chǎn)權(quán)現(xiàn)場(chǎng)審核記錄表模板
- 食品安全自查、從業(yè)人員健康管理、進(jìn)貨查驗(yàn)記錄、食品安全事故處置等保證食品安全的規(guī)章制度
- 2024年吉林省中考滿分作文《情味浸潤的時(shí)光》4
- 物理實(shí)驗(yàn)通知單記錄單初二上
評(píng)論
0/150
提交評(píng)論