湖南省高中會考(2009-2014年)——普通高中學(xué)業(yè)水平考試數(shù)學(xué)試卷及答案_第1頁
湖南省高中會考(2009-2014年)——普通高中學(xué)業(yè)水平考試數(shù)學(xué)試卷及答案_第2頁
湖南省高中會考(2009-2014年)——普通高中學(xué)業(yè)水平考試數(shù)學(xué)試卷及答案_第3頁
湖南省高中會考(2009-2014年)——普通高中學(xué)業(yè)水平考試數(shù)學(xué)試卷及答案_第4頁
湖南省高中會考(2009-2014年)——普通高中學(xué)業(yè)水平考試數(shù)學(xué)試卷及答案_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、科目:數(shù)學(xué)(試題卷)注意事項:1.答題前,考生務(wù)必將自己的姓名、準(zhǔn)考證號寫在答題卡和本試題卷的封面上,并認(rèn)真核對答題卡條形碼上的姓名、準(zhǔn)考證號和科目。2.選擇題和非選擇題均須在答題卡上作答,在本試題卷和草稿紙上作答無效。考生在答題卡上按答題卡中注意事項的要求答題。3.本試題卷共7頁。如缺頁,考生須及時報告監(jiān)考老師,否則后果自負(fù)。4.考試結(jié)束后,將本試題卷和答題卡一并交回。姓 名_準(zhǔn)考證號_祝你考試順利!2009年湖南省普通高中學(xué)業(yè)水平考試試卷數(shù)學(xué)本試題卷包括選擇題、填空題和解答題三部分,共 5 頁.時量120分鐘.滿分100分.一、選擇題:本大題共10小題,每小題4分,共40分.在每小題給出的

2、四個選項中,只有一項是符合題目要求的.1. 已知集合,,則( ) . A=9A= A+13PRINT AEND(第2題圖)A. B. C. D. 2. 若運(yùn)行右圖的程序,則輸出的結(jié)果是( ).A. 4 B. 13 C. 9 D. 223. 將一枚質(zhì)地均勻的骰子拋擲一次,出現(xiàn)“正面向上的點數(shù)為6”的概率是( ).A . B. C. D. 4. 的值為( ).A. B. C. D. 5. 已知直線過點(0,7),且與直線平行,則直線的方程為( ).A. B. C. D. 6. 已知向量,若,則實數(shù)的值為( ).A. B. C. D. 7. 已知函數(shù)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:123451

3、47在下列區(qū)間中,函數(shù)必有零點的區(qū)間為( ).A.(1,2) B. (2,3) C.(3,4) D. (4,5)8. 已知直線:和圓C: ,則直線和圓C的位置關(guān)系為( ).A.相交 B. 相切 C.相離 D. 不能確定9. 下列函數(shù)中,在區(qū)間上為增函數(shù)的是( ).A. B. C. D. 10. 已知實數(shù)滿足約束條件,則的最大值為( ).A. 1 B. 0 C. D. 二、填空題:本大題共5小題,每小題4分,共20分.11. 已知函數(shù),則 .12. 把二進(jìn)制數(shù)101(2)化成十進(jìn)制數(shù)為 .13. 在中,角A、B的對邊分別為, 則= .22(第14題圖) 正視圖 側(cè)視圖233 俯視圖14. 如圖是

4、一個幾何體的三視圖,該幾何體的體積為 .ACBM(第15題圖)15. 如圖,在中,M是BC的中點,若,則實數(shù)= .三、解答題:本大題共5小題,共40分.解答應(yīng)寫出文字說明、證明過程或演算步驟.16. (本小題滿分6分)已知函數(shù),.(1)寫出函數(shù)的周期;(2)將函數(shù)圖象上的所有的點向左平行移動個單位,得到函數(shù)的圖象,寫出函數(shù)的表達(dá)式,并判斷函數(shù)的奇偶性.17. (本小題滿分8分)分組頻數(shù)頻率0,1)100.101,2)0.202,3)300.303,4)20 4,5)100.105,6100.10合計1001.00某市為節(jié)約用水,計劃在本市試行居民生活用水定額管理,為了較為合理地確定居民日常用水

5、量的標(biāo)準(zhǔn),通過抽樣獲得了100位居民某年的月均用水量(單位:噸),右表是100位居民月均用水量的頻率分布表,根據(jù)右表解答下列問題:(1)求右表中和的值;(2)請將頻率分布直方圖補(bǔ)充完整,并根據(jù)直方圖估計該市每位居民月均用水量的眾數(shù).(第17題圖)18. (本小題滿分8分)PCBDA(第18題圖)如圖,在四棱錐P-ABCD中,底面ABCD是正方形,底面,且PA=AB.(1)求證:BD平面PAC;(2)求異面直線BC與PD所成的角.19. (本小題滿分8分) 如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長為x米 .(1)用x表示墻AB的長;(2)假

6、設(shè)所建熊貓居室的墻壁造價(在墻壁高度一定的前提下)為每米1000元,請將墻壁的總造價y(元)表示為x(米)的函數(shù);xDCFABE(第19題圖)(3)當(dāng)x為何值時,墻壁的總造價最低? 20. (本小題滿分10分)在正項等比數(shù)列中,, .(1) 求數(shù)列的通項公式;(2) 記,求數(shù)列的前n項和;(3) 記對于(2)中的,不等式對一切正整數(shù)n及任意實數(shù)恒成立,求實數(shù)m的取值范圍. 湖南省普通高中學(xué)業(yè)水平考試數(shù)學(xué)測試卷參考答案一、選擇題(每小題4分,共40分)題號12345678910答案CDDACBBABA二、填空題(每小題4分,共20分)11.2; 12. 5; 13.1 ;14. ;15. 2三、

7、解答題16.解:(1)周期為3分(2),5分 所以g(x)為奇函數(shù)6分17.解:(1) =20; 2分=0.20.4分(第16題圖)(2) 根據(jù)直方圖估計該市每位居民月均用水量的眾數(shù)為2.5 8分PCBDA(第17題圖)(說明:第二問中補(bǔ)充直方圖與求眾數(shù)只要做對一個得2分,兩個全對的4分.)18.(1)證明:,1分又為正方形,2分而是平面內(nèi)的兩條相交直線, 4分(2)解: 為正方形,為異面直線與所成的角,6分由已知可知,為直角三角形,又, ,異面直線與所成的角為45º.8分19.解:(1) 2分(2)5分(沒寫出定義域不扣分)(3)由當(dāng)且僅當(dāng),即時取等號(米)時,墻壁的總造價最低為2

8、4000元.答:當(dāng)為4米時,墻壁的總造價最低.8分20.解:(1). ,解得 或(舍去) 2分 3分 (沒有舍去的得2分)(2),5分?jǐn)?shù)列是首項公差的等差數(shù)列 7分(3)解法1:由(2)知,當(dāng)n=1時,取得最小值8分要使對一切正整數(shù)n及任意實數(shù)有恒成立,即即對任意實數(shù),恒成立,, 所以 ,故得取值范圍是10分解法2:由題意得:對一切正整數(shù)n及任意實數(shù)恒成立,即因為時,有最小值3,所以 ,故得取值范圍是10分2010年湖南省普通高中學(xué)業(yè)水平考試卷 數(shù)學(xué)本試題卷包括選擇題,填空題和解答題三部分,時量120分鐘,每分100分 一、選擇題:本大題共10小題,每小題4分,滿分40分,在每小題給出的四個選

9、項中,只有一項是符合題目要求1已知集合=1,2,=2,3, 則=( ) A 1,2; B 2,3 ;C 1,3 ; D 1,2,32 已知a、b、c,則( )A, a+c>b+c C D a+c3,下列幾何體中,正視圖。側(cè)視圖和俯視圖都相同的是( )A,圓柱 ; B 圓錐 ; C 球 ; D 三菱柱4已知圓C的方程為:+=4,則圓心坐標(biāo)與半徑分別為( )A (1,2),r=2; B (-1,-2),r=2; C (1,2),r=4; D (-1,-2),r=4;5、下列函數(shù)中,是偶函數(shù)的是( )A f(x)=x ; B f(x)= C f(x)=x ; D f(x)=sinx6 如圖所示

10、的圓盤由八個全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止,則指針停止在陰影部分內(nèi)的概率是( ) A ; B ;C ;D 7、化簡(sin+cos)2=( )A 1+sin2; B 1-sin ; C 1-sin2 ; D 1+sin8、在ABC中,若,則ABC是( )A 銳角三角形;B 鈍角三角形; C直角三角形;D 等腰三角形;9、已知函數(shù),f(1)=2,則函數(shù)f(x)的解析式是( )A f(x)=4x ; B f(x)= C f(x)=2x ; D f(x)=10、在ABC中,、b、c分別為角A、B、C的對邊,若A=60,b=1,c=2,則=( )A 1; B ; C 2 ;D 二、填空題

11、(每小題4分,共計20分)開始y=x+1輸入x結(jié)束輸出y11 直線y=2x+2的斜率是_12 已知如圖所示的程序框圖,若輸入的x值為1,則輸出和y值是_13 已知點(x,y)在如圖所示的陰影部分內(nèi)運(yùn)動,則z=2x+y的最大值是_14 已知向量a=(4,2),b=(x,3), (13題)若a|b,則實數(shù)x的值為_15 張山同學(xué)的家里開了一個小賣部, (12題)為了研究氣溫對某種冷飲銷售量的影響,他收集了這一段時間內(nèi)這種冷飲每天的銷售量y(杯)與當(dāng)天最高氣溫x(0C)的有關(guān)數(shù)據(jù),通過描繪散點圖,發(fā)現(xiàn)y和x呈現(xiàn)線性相關(guān)關(guān)系,并求得回歸方程為=2x+60,如果氣象預(yù)報某天的最高氣溫為340C,則可以預(yù)

12、測該天這種飲料的銷售量為_杯。三、解答題:本大題共有5小題,滿分40分,解答應(yīng)寫出文字說明、證明過程或演算步驟。16、(6分)已知函數(shù)f(x)=Asin2x(A>0)的部分圖象,如圖所示,(1)判斷函數(shù)y=f(x)在區(qū)間,上是增函數(shù)還是減函數(shù),并指出函數(shù)y=f(x)的最大值。(2)求函數(shù)y=f(x)的周期T。17、(8分)如圖是一名籃球運(yùn)動員在某一賽季10場比賽的得分的原始記錄的徑葉圖,(1)計算該運(yùn)動員這10場比賽的平均得分;(2)估計該運(yùn)動員在每場比賽中得分不少于40分的概率。1 62 4 73 3 4 6 94 1 4 618 (8分)在等差數(shù)列中,已知2=2,4=4,(1)求數(shù)列

13、的通項公式; (2)設(shè),求數(shù)列前5項的和S5。19、(8分)如圖,為長方體,(1)求證:B1D1|平面BC1D;(2)若BC=C1C,求直線BC1與平面ABCD所成角的大小。20 (10分)已知函數(shù)f(x)=log2(x-1).(1)求函數(shù)f(x)的定義域;(2)設(shè)g(x)= f(x)+;若函數(shù)y=g(x)在(2,3)有且僅有一個零點,求實數(shù)的取值范圍;(3)設(shè)h(x)=,是否存在正實數(shù)m,使得函數(shù)y=h(x)在3,9內(nèi)的最大值為4?若存在,求出m的值;若不存在,請說明理由。 參考答案:1、 選擇題:1-10 DACACDABCD2、 填空題:11 2 ; 12 2 ; 13 4; 14 6

14、; 15 128;三、解答題:16 (1)減函數(shù),最大值為2;(2)T=。17 (1)34;(2)0.318 (1) = n;(2)S5=62;19(1)略;(2)450; 20(1)x|x>1;(2) -1<a<0 ;(3) m=4.2011年湖南普通高中學(xué)業(yè)水平考試試卷數(shù) 學(xué)本試題卷包括選擇題、填空題和解答題三部分.時量120分鐘,滿分100分一、選擇題:本大題共10小題,每小題4分,滿分40分.在每小題給出的四個選項中,只有一項是符合題目要求的1已知集合,則等于( )ABCD2若函數(shù),則等于( )A3B6C9D3直線與直線的交點坐標(biāo)為( )ABCD4兩個球的體積之比為8

15、:27,那么這兩個球的表面積之比為( )ABCD5已知函數(shù),則是( )A奇函數(shù)B偶函數(shù)C非奇非偶函數(shù)D既是奇函數(shù)又是偶函數(shù)6向量,則( )ABC與的夾角為D與的夾角為 7已知等差數(shù)列中,則的值是( )A15B30C31D648閱讀下面的流程圖,若輸入的,分別是5,2,6,則輸出的,分別是( )A6,5,2B5,2,6C2,5,6D6,2,59已知函數(shù)在區(qū)間(2,4)內(nèi)有唯一零點,則的取值范圍是( )ABCD10在中,已知,則等于( )ABCD二、填空題:本大題共5小題,每小題4分,滿分20分11某校有高級教師20人,中級教師30人,其他教師若干人,為了了解該校教師的工資收入情況,擬按分層抽樣的

16、方法從該校所有的教師中抽取20人進(jìn)行調(diào)查.已知從其他教師中共抽取了10人,則該校共有教師 人12的值是 13已知,且,則的最大值是 14若冪函數(shù)的圖像經(jīng)過點,則的值是 15已知是定義在上的奇函數(shù),當(dāng)時,的圖像如圖所示,那么的值域是 三、解答題:本大題共5小題,滿分40分解答應(yīng)寫出文字說明、證明過程或演算步驟16(本小題滿分6分)一個均勻的正方體玩具,各個面上分別寫有1,2,3,4,5,6,將這個玩具先后拋擲2次,求:(1)朝上的一面數(shù)相等的概率;(2)朝上的一面數(shù)之和小于5的概率17(本小題滿分8分)如圖,圓心的坐標(biāo)為(1,1),圓與軸和軸都相切.(1)求圓的方程;(2)求與圓相切,且在軸和軸

17、上的截距相等的直線方程18(本小題滿分8分)如圖,在三棱錐,底面,、分別是、的中點(1)求證:平面;(2)求證:19(本小題滿分8分)已知數(shù)列的前項和為(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和為20(本小題滿分10分)設(shè)函數(shù),其中向量,(1)求的最小正周期; (2)當(dāng)時,恒成立,求實數(shù)的取值范圍2012年湖南省普通高中學(xué)業(yè)水平考試數(shù)學(xué)試卷 正視圖(第2題圖) 俯視圖 側(cè)視圖一、選擇題:本大題共10小題,每小題4分,滿分40分在每小題給出的四個選項中,只有一項是符合題目要求的1已知等差數(shù)列的前3項分別為2、4、6,則數(shù)列的第4項為 A7 B8C10 D122如圖是一個幾何體的三視圖,則該

18、幾何體為 A球 B圓柱 C圓臺 D圓錐3函數(shù)的零點個數(shù)是A0 B1 C2 D34已知集合,若,則的值為 A3 B2 C0 D-15已知直線:,:,則直線與的位置關(guān)系是A重合 B垂直C相交但不垂直 D平行6下列坐標(biāo)對應(yīng)的點中,落在不等式表示的平面區(qū)域內(nèi)的是A(0,0) B(2,4) C(-1,4) D(1,8)7某班有50名同學(xué),將其編為1、2、3、50號,并按編號從小到大平均分成5組現(xiàn)用系統(tǒng)抽樣方法,從該班抽取5名同學(xué)進(jìn)行某項調(diào)查,若第1組抽取的學(xué)生編號為3,第2組抽取的學(xué)生編號為13,則第4組抽取的學(xué)生編號為A14 B23 C33 D43(第8題圖)CABD8如圖,D為等腰三角形ABC底邊A

19、B的中點,則下列等式恒成立的是A B C D9將函數(shù)的圖象向左平移個單位長度,得到的圖象對應(yīng)的函數(shù)解析式為A B C D(第10題圖)10如圖,長方形的面積為2,將100顆豆子隨機(jī)地撒在長方形內(nèi),其中恰好有60顆豆子落在陰影部分內(nèi),則用隨機(jī)模擬的方法可以估計圖中陰影部分的面積為A B C D二、填空題:本大題共5小題,每小題4分,滿分20分11比較大小: (填“”或“”)12已知圓的圓心坐標(biāo)為,則實數(shù) 開始 輸入a,b,c 輸出結(jié)束(第13題圖)13某程序框圖如圖所示,若輸入的值分別為3,4,5,則輸出的值為 14已知角的終邊與單位圓的交點坐標(biāo)為(),則= 15如圖,A,B兩點在河的兩岸,為了

20、測量A、B之間的距離,測量者在A的同側(cè)選定一點C,測出A、C之間的距離是100米,BAC=105º,ACB=45º,則A、B兩點之間的距離為 米(第15題圖)BAC105º45º河三、解答題:本大題共5小題,滿分40分解答應(yīng)寫出文字說明、證明過程或演算步驟16(本小題滿分6分)-2-1O2562-11(第16題圖)已知函數(shù)()的圖象如圖根據(jù)圖象寫出:(1)函數(shù)的最大值;(2)使的值17(本小題滿分8分)一批食品,每袋的標(biāo)準(zhǔn)重量是50,為了了解這批食品的實際重量情況,從中隨機(jī)抽取10袋食品,稱出各袋的重量(單位:),并得到其莖葉圖(如圖)(1)求這10袋食

21、品重量的眾數(shù),并估計這批食品實際重量的平均數(shù);4 5 6 6 95 0 0 0 1 1 2 (第17題圖)(2)若某袋食品的實際重量小于或等于47,則視為不合格產(chǎn)品,試估計這批食品重量的合格率18(本小題滿分8分)如圖,在四棱柱ABCD-A1B1C1D1中,D1D底面ABCD,底面ABCD是正方形,且AB=1,D1D=(第18題圖)ABCDA1B1C1D1(1)求直線D1B與平面ABCD所成角的大小;(2)求證:AC平面BB1D1D19(本小題滿分8分)已知向量a =(,1),b =(,1),R(1)當(dāng)時,求向量a + b的坐標(biāo);(2)若函數(shù)|a + b|2為奇函數(shù),求實數(shù)的值20(本小題滿分

22、10分)已知數(shù)列的前項和為(為常數(shù),N*)(1)求,;(2)若數(shù)列為等比數(shù)列,求常數(shù)的值及;(3)對于(2)中的,記,若對任意的正整數(shù)恒成立,求實數(shù)的取值范圍2012年湖南省普通高中學(xué)業(yè)水平考試數(shù)學(xué)試卷參考答案一、選擇題(每小題4分,滿分40分)題號12345678910答案BDCBDACBAC二、填空題(每小題4分,滿分20分)11; 12 3; 134; 14 ; 15 三、解答題(滿分40分)16解:(1)由圖象可知,函數(shù)的最大值為2; 3分(2)由圖象可知,使的值為-1或5 6分17解:(1)這10袋食品重量的眾數(shù)為50(), 2分因為這10袋食品重量的平均數(shù)為(),所以可以估計這批食

23、品實際重量的平均數(shù)為49(); 4分(2)因為這10袋食品中實際重量小于或等于47的有3袋,所以可以估計這批食品重量的不合格率為,故可以估計這批食品重量的合格率為 8分18(1)解:因為D1D面ABCD,所以BD為直線B D1在平面ABCD內(nèi)的射影,所以D1BD為直線D1B與平面ABCD所成的角, 2分又因為AB=1,所以BD=,在RtD1DB中,所以D1BD=45º,所以直線D1B與平面ABCD所成的角為45º; 4分(2)證明:因為D1D面ABCD,AC在平面ABCD內(nèi),所以D1DAC,又底面ABCD為正方形,所以ACBD, 6分因為BD與D1D是平面BB1D1D內(nèi)的兩

24、條相交直線,所以AC平面BB1D1D 8分19解:(1)因為a =(,1),b =(,1),所以a + b; 4分(2)因為a + b,所以, 6分 因為為奇函數(shù),所以,即,解得 8分注:由為奇函數(shù),得,解得同樣給分20解:(1), 1分由,得, 2分由,得; 3分(2)因為,當(dāng)時,又為等比數(shù)列,所以,即,得, 5分故; 6分(3)因為,所以, 7分令,則,設(shè),當(dāng)時,恒成立, 8分當(dāng)時,對應(yīng)的點在開口向上的拋物線上,所以不可能恒成立, 9分當(dāng)時,在時有最大值,所以要使 對任意的正整數(shù)恒成立,只需,即,此時,綜上實數(shù)的取值范圍為 10分說明:解答題如有其它解法,酌情給分2013年湖南省普通高中學(xué)

25、業(yè)水平考試數(shù)學(xué)試卷1、 選擇題:本大題共10小題,每小題4分,滿分40分.1已知集合,若,則的值為( )A3 B2 C1 D0 2設(shè),則的值為( )A0 B1 C2D-1 3已知一個幾何體的三視圖如圖所示,則該幾何體是( ).A.圓柱 B. 三棱柱C.球 D.四棱柱4函數(shù)的最小值是( )A-3 B-1C1 D3 5已知向量,若,則實數(shù)的值為( )A B C-2 D-86某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)分別為600,400,800,為了了解教師的教學(xué)情況,該校采用分層抽樣的方法,從這三個年級中抽取45名學(xué)生進(jìn)行座談,則高一、高二、高三年級抽取的人數(shù)分別為( )AB CD7某袋中有9個大小相同

26、的球,其中有5個紅球,4個白球,現(xiàn)從中任意取出1個,則取出的球恰好是白球的概率為( )A B C D8已知點在如圖所示的平面區(qū)域(陰影部分)內(nèi)運(yùn)動,則的最大值是( )A1 B2 C3 D59已知兩點,則以線段為直徑的圓的方程是( )A B C D 10如圖,在高速公路建設(shè)中需要確定隧道的長度,工程技術(shù)人員已測得隧道兩端的兩點到點的距離km,且,則兩點間的距離為( ) Akm Bkm Ckm Dkm開始輸入 輸出結(jié)束是否(第14題圖)二、填空題:本大題共5小題,每小題4分,滿分20分11計算: .12已知成等比數(shù)列,則實數(shù) 13經(jīng)過點,且與直線垂直的直線方程是 14某程序框圖如圖所示,若輸入的的

27、值為,則輸出的值為 . 15已知向量與的夾角為,且,則 . 三、解答題:本大題共5小題,滿分40分解答應(yīng)寫出文字說明、證明過程或演算步驟16(本小題滿分6分)已知(1)求的值;(2)求的值.17(本小題滿分8分)某公司為了了解本公司職員的早餐費(fèi)用情況,抽樣調(diào)査了100位職員的早餐日平均費(fèi)用(單位:元),得到如下圖所示的頻率分布直方圖,圖中標(biāo)注的數(shù)字模糊不清.(1) 試根據(jù)頻率分布直方圖求的值,并估計該公司職員早餐日平均費(fèi)用的眾數(shù);(2) 已知該公司有1000名職員,試估計該公司有多少職員早餐日平均費(fèi)用不少于8元?18(本小題滿分8分)如圖,在三棱錐中,平面,直線與平面所成的角為,點分別是的中點

28、.(1)求證:平面;(2)求三棱錐的體積.19(本小題滿分8分)已知數(shù)列滿足:,.(1)求及通項;(2)設(shè)是數(shù)列的前項和,則數(shù)列,中哪一項最???并求出這個最小值.20(本小題滿分10分) 已知函數(shù)(1)當(dāng)時,求函數(shù)的零點;(2)若函數(shù)為偶函數(shù),求實數(shù)的值;(3)若不等式在上恒成立,求實數(shù)的取值范圍.2013年湖南省普通高中學(xué)業(yè)水平考試數(shù)學(xué)試卷參考答案一、 選擇題題號12345678910答案ABCABDCDCA二、填空題11、 2 ; 12、 ±3 ; 13、; 14、 ; 15、 4 三、解答題:16、(1),從而(2)17、(1)高一有:(人);高二有(人)(2)頻率為人數(shù)為(人

29、)18、(1)(2)時,的最小值為5,時,的最大值為14.19、(1),為首項為2,公比為2的等比數(shù)列,(2),20、(1),(2)由(3)由設(shè)則,即2014年湖南省普通高中學(xué)業(yè)水平考試試卷數(shù) 學(xué)本試卷包括選擇題、填空題和解答題三部分,共5頁時量120分鐘,滿分100分.一、選擇題:本大題共10小題,每小題4分,滿分40分. 在每小題給出的四個選項中,只有一項是符合題目要求的.1如圖是一個幾何體的三視圖,則該幾何體為A.圓柱 B.圓錐C.圓臺 D.球2.已知元素,且,則的值為A.0 B.1 C.2 D.33.在區(qū)間內(nèi)任取一個實數(shù),則此數(shù)大于3的概率為A. B. C. D.4.某程序框圖如圖所示

30、,若輸入的值為1,則輸出的值是A.2 B.3 C.4 D.55.在中,若,則的形狀是A.直角三角形 B.等腰三角形C.銳角三角形 D.鈍角三角形6.的值為A. B. C. D. 7.如圖,在正方體中,異面直線與的位置關(guān)系是A.平行 B.相交 C.異面但不垂直 D. 異面且垂直8.不等式的解集為A. B. C. D. 9.點不在不等式表示的平面區(qū)域內(nèi),則實數(shù)的取值范圍是A. B. C. D.10. 某同學(xué)從家里騎車一路勻速行駛到學(xué)校,只是在途中遇到一次交通堵塞,耽誤了一些時間,下列函數(shù)的圖像最能符合上述情況的是二、填空題:本大題共5小題,每小題4分,滿分20分.11. 樣本數(shù)據(jù)的眾數(shù)是 .12. 在中, 角、所對應(yīng)的邊分別為、,已知,則 .13. 已知是函數(shù)的零點, 則實數(shù)的值為 .

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論