![圓周運動中臨界問題_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/10/6a0b478c-8e05-4a82-9340-6b45941660b3/6a0b478c-8e05-4a82-9340-6b45941660b31.gif)
![圓周運動中臨界問題_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-2/10/6a0b478c-8e05-4a82-9340-6b45941660b3/6a0b478c-8e05-4a82-9340-6b45941660b32.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、第1頁共 7 頁圓周運動中的臨界問題教學(xué)目的:會運用受力分析及向心力公式解決圓周運動的臨界問題教學(xué)重點:掌握解決圓周運動的兩種典型的臨界問題教學(xué)難點:會分析判斷臨界時的速度或受力特征教學(xué)內(nèi)容一、有關(guān)概念1 向心加速度的概念2、向心力的意義(由一個力或幾個力提供的效果力)二、內(nèi)容1 在豎直平面內(nèi)作圓周運動的臨界問題(1)如圖 42-2 和圖 42-3 所示,沒有物體支撐的小球,在豎直平面內(nèi)做圓周運動過最高點的情況:能過最高點的條件:V.Rg,當(dāng) v .Rg 時,繩對球產(chǎn)生拉力,軌道對球產(chǎn)生壓力;不能過最高點的條件:vvv臨界(實際上球還沒到最高點時就脫離了軌道)(2)如圖 424 的球過最高點時
2、,輕質(zhì)桿對球產(chǎn)生的彈力情況:1當(dāng) v=0 時,F(xiàn)N=mg (FN為支持力);2當(dāng) Ovvv. Rg 時,F(xiàn)N隨 v 增大而減小,且 mgFN 0,FN為支持力;3當(dāng) v=.、Rg 時,F(xiàn)N=O;當(dāng) v . Rg 時,F(xiàn)N為拉力,F(xiàn)N隨 v 的增大而增大圖 424圖 425若是圖 425 的小球在軌道的最高點時,如果 v.Rg,此時將脫離軌道做平拋運動,因為軌道對小球不能產(chǎn)生拉力.例 1 長 L = 0.5m,質(zhì)量可以忽略的的桿,其下端固定于 0 點,上 2kg 的小球 A ,A 繞 0 點做圓周運動(同圖 5),在 A 通過最高點, 下桿的受力:當(dāng) A 的速率 vi= 1m/s 時當(dāng) A 的速
3、率 v2= 4m/s 時解析:Vo=JgL= 10X0.5 m/ s= . 5 m / s小球的速度大于,5 m/s 時受拉力,小于 5 m/s 時受壓力。 解法一:Vo臨界條件:繩子或軌道對小球沒有力的作用:圖 4-232V mg=mR向上的支持力 Nv臨界端連接著一個質(zhì)量試討論在下列兩種情況圖46第2頁共 7 頁當(dāng) vi= 1m/sv5 m/s 時,小球受向下的重力 mg 和第3頁共 7 頁m= 0.2 kg 的小球,使之在斜面上作圓周運動,求:(1)小球如細繩受到 9.8N 的拉力就會斷裂,求小球通過最低點B2、在水平面內(nèi)作圓周運動的臨界問題在水平面上做圓周運動的物體,當(dāng)角速度3變化時,
4、 物體有遠離或向著圓心運動的要根據(jù)物體的受力情況,繩的拉力等)。通過最高點 A 時最小速度;時的最大速度(半徑有變化)趨勢。這時,判斷物體受某個力是否存在以及這個力存在時方向朝哪(特別是一些接觸力, 如靜摩擦力、例 3 如圖 9 所示,一個光滑的圓錐體固定在水平桌面上,其軸線沿豎直方向,母線與軸線之間的夾角為B=30,條長度為 L 的繩(質(zhì)量不計),一端的位置固定在圓錐體的頂點0 處,另一端拴著一個質(zhì)量為m 的小物體(物體可看質(zhì)點),物體以速率v 繞圓錐體的軸線做水平勻速圓周運動。求繩對物體的拉力;求繩對物體的拉力。解析:設(shè)小球剛好對錐面沒有壓力時的速率為2mgtcm30 m0(2分)(1)當(dāng)
5、i1iglo時,有 T sin 30N cos 30ml sin 30T cos30N sin 30( ?)當(dāng)mg (2 分)解得 T13 3mg 1.03mg(2 分)球離開錐面,設(shè)繩與軸線夾角為,則32gl0時,小2v 由牛頓第二定律mg N = m 解法二:小球在最高點時既可以受拉力也可以受支持力,因此桿受小球的作用力也可以是拉力或者是壓力。我們可不去做具體的判斷而假設(shè)一個方向。如設(shè)桿豎直向下拉小球A,則小球的受力就是上面解法中的的情形。/v2由牛頓第二定律mg+ F = m 得 F = m(匚g)當(dāng) vi= 1m/s 時,F(xiàn)i= 16NFi為負值,說明它的實際方向與所設(shè)的方向相反,即小
6、球受力應(yīng)向上,為支持力。則桿應(yīng)受壓力。當(dāng) V2= 4m/s 時,F(xiàn)2= 44N。F2為正值,說明它的實際方向與所設(shè)的方向相同,即小球受力就是向下的,是拉力。則桿也應(yīng)受拉力。N = mg mv2=16N即桿受小球的壓力 16N。當(dāng) V2= 4m/s 5 m/s 時,小球受向下的重力 mg 和向下的拉力 F,由牛頓第二定律v2mg + F = m匸mgoXf mg即桿受小球的拉力F= m L mg= 44N44N。例 2 如圖 4 所示,在傾角9=30的光滑斜面上,有一長I = 0.4m 的細繩,一端固定在 0 點,另一端拴一質(zhì)量為時,時,0,則有圖 926第4頁共 7 頁第5頁共 7 頁最大靜摩
7、擦力 2N。再對 M 運用牛頓第二定律有T + fm= M322r解得32= 6.5 rad/ s所以,題中所求3的范圍是:2.9 rad/s36.5 rad/s例 6 如圖 8 所示,水平轉(zhuǎn)盤上放有質(zhì)量為m 的物塊,當(dāng)物塊到物塊和轉(zhuǎn)軸的繩剛好被拉直(繩上張力為零)。物體和轉(zhuǎn)盤間最大 倍。求:當(dāng)轉(zhuǎn)盤角速度31= ,時,細繩的拉力 T1。T cos mg (2 分) T sin ml sin 30(2 分)解得 T 2mg(2 分)例 4 如圖 6 所示,兩繩系一質(zhì)量為m= 0.1kg 的小球,上面繩長 L = 2m,兩端都拉直時與軸的夾角分別為30與 45,問球的角速度在什么范圍內(nèi),兩繩始終張
8、緊,當(dāng)角速度為3 rad/s 時,上、下兩繩拉力分別為多大?解析:當(dāng)角速度3很小時,AC 和 BC 與軸的夾角都很小,BC并不張緊。當(dāng)3逐漸增大到30時,BC 才被拉直(這是一個臨界狀態(tài)),但 BC 繩中的張力仍然為零。設(shè)這時的角速度為31,則有:TACCOS30= mgTACSin30=m312Lsin30將已知條件代入上式解得31= 2.4 rad / s當(dāng)角速度3繼續(xù)增大時TAC減小,TBC增大。設(shè)角速度達到32時,TAC= 0 (這又是一個臨界狀態(tài)),則有:TBCCOS45= mgTBcsin45 =m322Lsin30將已知條件代入上式解得32= 3.16 rad/s所以 當(dāng)3滿足
9、2.4 rad / s33.16rad/s 時,TAC= 0,BC 與軸的夾角大于 45。例 5 如圖 7 所示,細繩一端系著質(zhì)量 M = 0.6kg 的物體,靜止在水平面上,另一端通過光滑的小孔吊著質(zhì)量m=0.3kg 的物體,M 的中與圓孔距離為 0.2m,并知 M 和水平面的最大靜摩擦力為2N?,F(xiàn)使此平面繞中心軸線轉(zhuǎn)動,問角速度3在什么范圍 m 會處于靜止?fàn)顟B(tài)? ( g= 10m/s2)先以 m= 0 為題引入,由淺入深解析:要使 m 靜止,M 也應(yīng)與平面相對靜止。而 M與平面靜止時有兩個臨界狀態(tài):當(dāng)3為所求范圍最小值時,M 有向著圓心運動的趨勢,水平面對 M 的靜摩擦力的方向 背離圓心,
10、大小等于最大靜摩擦力2N。此時,對 M 運用牛頓第二定律。有T fm= M312r且T = mg解得31= 2.9 rad/ s當(dāng)3為所求范圍最大值時,M 有背離圓心運動的趨勢,水平面對M 的靜摩擦力的方向向著圓心,大小還等于圖 6轉(zhuǎn)軸的距離為 r 時, 連接 靜摩擦力是其下壓力的第6頁共 7 頁塊。A 的質(zhì)量為,離軸心,B 的質(zhì)量為,離軸心T2。解析:設(shè)轉(zhuǎn)動過程中物體與盤間恰好達到最大靜摩擦力時轉(zhuǎn)動的角速度為(1 )因為,所以物體所需向心力小于物體與盤間的最大摩擦力,則物與盤間還未到最大靜摩擦力,細繩的拉力仍為 0,即。(2)因為,所以物體所需向心力大于物與盤間的最大靜摩擦力,則細繩將對物體
11、施加拉力,由牛頓的第二定律得:3、連接體的臨界問題例 1、如圖所示,勻速轉(zhuǎn)動的水平圓盤上,放有質(zhì)量均為m 的小物體 A、B, A、B 間用細線沿半徑方向相連,它們到轉(zhuǎn)軸距離分別為 RA=20cm,RB=30cm。A、B 與盤面間的最大靜摩擦力均為重力的0.4 倍,試求:(1) 當(dāng)細線上開始出現(xiàn)張力時,圓盤的角速度30;(2) 當(dāng) A 開始滑動時,圓盤的角速度3;(3) 當(dāng)即將滑動時,燒斷細線, A、B 狀態(tài)如何?答案:(1)當(dāng)細線上開始岀現(xiàn)張力時,表明B 與盤間的靜摩擦力已達到最大,設(shè)此時圓盤角速度為3是 kmg=mB32解得:0kg/rB=3.7rad/s又: FfAm=FfBm=kmg解得
12、3=4rad/s。(3)燒斷細線,A 與盤間的靜摩擦力減小,繼續(xù)隨盤做半徑為 rA=20cm 的圓周運動,而 B 由于 FfBm不足以提供必要的向心力而做離心運動。答案:(1)3.7rad/s4rad/s (3)A做圓周運動,B 做離心運動分析:1、利用極限分析法的“放大”思想分析臨界狀態(tài)。認清臨界情景和條件,建立臨界關(guān)系是解決此類問題的關(guān)鍵。2、圓周運動中的連接體加速度一般不同,所以,解決這類連接體的動力學(xué)問題時一般用隔離法。但也可用整體法來求解。三、鞏固練習(xí)1、汽車通過拱橋顆頂點的速度為310 m/s 時,車對橋的壓力為車重的 4。如果使汽車駛至橋頂時對橋恰無壓力,則汽車的速度為()A、1
13、5 m/ sB、20 m/ sC、25 m / sD、30m/ s2、如圖所示,在勻速轉(zhuǎn)動的圓盤上,沿直徑方向上放置以細線相連的A、B 兩,則,解得,解得當(dāng) A 開始滑動時,表明 A 與盤的靜摩擦力也已達到最大,設(shè)此時盤轉(zhuǎn)動角速度為3,線上拉力為FT則,對 A: FfAm-FT=mrA3對B:FfBm+FT=mrB3當(dāng)轉(zhuǎn)盤角速度3時,細繩的拉力0第7頁共 7 頁,A、B 與盤面間相互作用的摩擦力最大值為其重力的0.5 倍,試求(1) 當(dāng)圓盤轉(zhuǎn)動的角速度為多少時,細線上開始出現(xiàn)張力?(2) 欲使 A、B 與盤面間不發(fā)生相對滑動,則圓盤轉(zhuǎn)動的最大角速度為多大?()解析:(1) 較小時,A、B 均由
14、靜摩擦力充當(dāng)向心力,增大,可知,它們受到的靜摩擦力也增大,而,所以 A 受到的靜摩擦力先達到最大值。再增大,AB 間繩子開始受到拉力。由,得:(2) 達到 后,再增加,B 增大的向心力靠增加拉力及摩擦力共同來提供,A 增大的向心力靠增加拉力來提供,由于 A 增大的向心力超過 B 增加的向心力, 再增加,B 所受摩擦力逐漸減小,直到為零,如再增加,B 所受的摩擦力就反向,直到達最大靜摩擦力。如再增加,就不能維持勻速圓周運動了, A、B 就在圓盤上滑動起來。設(shè)此時角速度為 ,繩中張力為 ,對 A、B 受力分析:對 A 有對 B 有聯(lián)立解得:3、 一內(nèi)壁光滑的環(huán)形細圓管,位于豎直平面內(nèi),環(huán)的半徑為R
15、 (比細管半徑大得多)。在圓管中有兩個直徑與細管內(nèi)徑相同的小球(可視為質(zhì)點)。A 球的質(zhì)量 m!, B 球的質(zhì)量為 m2,它們沿環(huán)形管順時針運動,經(jīng)過最低點時的速度都為 vo,設(shè) A 球運動到最低點,B 球恰好運動到最高點。若要此時兩球作用于圓管的合力為零,那么 mi、m2、R 與v0 應(yīng)滿足的關(guān)系式是_ 。(97 年高考題)4、如圖 39-3 所示,物體 P 用兩根長度相等、不可伸長的細線系于豎直桿上,它們隨桿 轉(zhuǎn)動,若轉(zhuǎn)動角速度為3,則 ABCA.3只有超過某一值時,繩子AP 才有拉力B .繩子 BP 的拉力隨3的增大而增大C .繩子 BP 的張力一定大于繩子 AP 的張力D .當(dāng)3增大到
16、一定程度時,繩AP 的張力大于 BP 的張力5、如圖 2 所示,在勻速轉(zhuǎn)動的水平圓盤上, 沿半徑方向放著用細線連接的質(zhì)量相等的兩物體 A 和 B,它們與盤間的摩擦因數(shù)相同.當(dāng)圓盤轉(zhuǎn)速加快到兩物體剛好還未發(fā)生滑動時,燒斷細線,則兩物體的運動情況將是【】A 兩物體均沿切線方向滑動B. 兩物體均沿半徑方向滑動,離圓盤圓心越來越遠C. 兩物體仍隨圓盤一起做勻速圓周運動,不會發(fā)生滑動團 39-3圖 2第8頁共 7 頁D. 物體 A 仍隨圓盤一起做勻速圓周運動,不會發(fā)生滑動; 物體 B 發(fā)生滑動,沿一條曲線向外運動,離圓盤圓心越來越遠6、半徑為R的光滑半圓球固定在水平面上,如圖所示.頂部有一小物體甲,今給
17、它一個水平初速度 vo=.gR,物體甲將A .沿球面下滑至 M 點B .先沿球面下滑至某點 N,然后便離開球面做斜下拋運動第9頁共 7 頁C.按半徑大于 R 的新的圓弧軌道做圓周運動D .立即離開半圓球做平拋運動7、長度為 0. 5m 的輕質(zhì)細桿OA,A 端有一質(zhì)量為 3kg 的木球,以 0 點為圓心,在豎直面 內(nèi)作圓周運動,如圖所示,小球通過最高點的速度為2m/s,取 g = 10 m/s2,則此時球?qū)p桿的力大小是,方向向。8、如圖所示,在勻速轉(zhuǎn)動的水平盤上,沿半徑方向放著用細線相連的質(zhì)量相等的兩物體 和 B,它們與盤間的摩擦因數(shù)相同,當(dāng)圓盤轉(zhuǎn)速加快到兩物體剛好沒有發(fā)生滑動時,燒斷細線,
18、則兩物體的運動情況將是A 兩物體均沿切線方向滑動B 兩物體均沿半徑方向滑動,遠離圓心C.兩物體仍隨圓盤一起做勻速圓周運動,不會滑動D .物體 A 仍隨圓盤做勻速圓周運動,物體B 沿曲線運動, 遠離圓心9、如圖所示,木板 B 托著木塊 A 在豎直平面內(nèi)作勻速圓周運動,從與圓心相平的位置動到最高點 b 的過程中()A、 B 對 A 的支持力越來越大B、 B 對 A 的支持力越來越小C、 B 對 A 的摩擦力越來越大D、 B 對 A 的摩擦力越來越小10、如圖所示,兩根長度相同的細繩,連接著相同的兩個小球讓它們在光滑的水平面內(nèi)做勻速圓周運動,其中 O 為圓心,兩段繩子在同一直線上,此時,兩段繩子受到
19、的拉力之比T1: T2為()A、1 : 1B、2 : 1C、3 : 2D、3 : 111、如圖所示,小球 M 與穿過光滑水平板中央的小孔 0 的輕繩相連,用手拉著繩的另一端使 作半徑為a ,角速度為3 1的勻速圓周運動, 求:(1)此時 M 的速率.(2)若將繩子突然放松一段, 間后又拉直,此后球繞 O 作半徑為 b 的勻速圓周運動,求繩由放松到拉直的時間t .12、一內(nèi)壁光滑的環(huán)形細圓管,位于豎直平面內(nèi),環(huán)的半徑為 與細管內(nèi)徑相同的小球(可視為質(zhì)點),A 球的質(zhì)量為經(jīng)過最低點時的速度都是 v,設(shè) A 球運動到最低點時, 合力為零,那么 m1, m2, R 與 v0應(yīng)滿足的關(guān)系。R (比細管的半徑大得多),在圓管中有兩個直徑m1, B 球的質(zhì)量為 m2,它們沿環(huán)形圓管順時針運動, B球恰好運動到最高點,若要此時兩球作用于圓管的AM 在水平板上第10頁共 7 頁圓周運動補充1.一探照燈照射在云層底面上,云層底面是與地面平行的平面,如圖所示,云層底面距地面高h,探照燈以角速度3在豎直平面內(nèi)轉(zhuǎn)動,當(dāng)光束轉(zhuǎn)到與豎直方向夾角為B時,云
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電商企業(yè)如何構(gòu)建自己的智能物流體系
- 2025年陽泉貨運資格證安檢考試題
- 生物安全實驗室建設(shè)與生物技術(shù)產(chǎn)業(yè)發(fā)展
- 現(xiàn)代零售業(yè)中的跨領(lǐng)域合作與創(chuàng)新發(fā)展
- 2025年貴陽貨運從業(yè)資格證模擬
- 物流倉儲管理的技術(shù)升級與優(yōu)化
- 電動車保養(yǎng)及維修專業(yè)知識培訓(xùn)課程
- 現(xiàn)代測繪技術(shù)在城市交通規(guī)劃中的關(guān)鍵作用
- 環(huán)氧脂肪酸甲酯生產(chǎn)技術(shù)創(chuàng)新及其市場競爭力
- 電力系統(tǒng)優(yōu)化設(shè)計在醫(yī)療領(lǐng)域的應(yīng)用
- (2024年)剪映入門教程課件
- 《寵物飼養(yǎng)》課程標(biāo)準(zhǔn)
- 快餐品牌全案推廣方案
- 環(huán)境衛(wèi)生整治推進行動實施方案
- 口腔醫(yī)院感染預(yù)防與控制1
- 緒論中國文化概論張岱年
- 發(fā)生輸液反應(yīng)時的應(yīng)急預(yù)案及處理方法課件
- 中國旅游地理(高職)全套教學(xué)課件
- 數(shù)字貨幣的匿名性與反洗錢
- 門脈高壓性消化道出血的介入治療課件
- 民航保密培訓(xùn)課件
評論
0/150
提交評論