測試函數(shù)2D圖_第1頁
測試函數(shù)2D圖_第2頁
測試函數(shù)2D圖_第3頁
測試函數(shù)2D圖_第4頁
測試函數(shù)2D圖_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、1、一維函數(shù)一維單峰函數(shù)一維多峰單全局最優(yōu)解函數(shù)一維多峰多局部最優(yōu)解函數(shù)2、二維函數(shù)2.1二維單峰函數(shù)2.2 二維多峰單全局最優(yōu)解函數(shù)2.2.1 SHUBERT FUNCTIONDescription:Dimensions: 2 The Shubert function has several local minima and many global minima. The second plot shows the the function on a smaller input domain, to allow for easier viewing. Input Domain:The fun

2、ction is usually evaluated on the square xi -10, 10, for all i = 1, 2, although this may be restricted to the square xi -5.12, 5.12, for all i = 1, 2. Global Minimum:Schwefel Function2.2.2 EGGHOLDER FUNCTIONDescription:Dimensions: 2 The Eggholder function is a difficult function to optimize, because

3、 of the large number of local minima. Input Domain:The function is usually evaluated on the square xi -512, 512, for all i = 1, 2. Global Minimum:2.2.3 Levy 5 test objective function.This class defines the Levy 5 global optimization problem. This is a multimodal minimization problem defined as follo

4、ws:Here, represents the number of dimensions and for .Two-dimensional Levy 5 functionGlobal optimum: for .2.2.4 LANGERMANN FUNCTIONDescription:Dimensions: d The Langermann function is multimodal, with many unevenly distributed local minima. The recommended values of m, c and A, as given by Molga &am

5、p; Smutnicki (2005) are (for d = 2): m = 5, c = (1, 2, 5, 2, 3) and:Input Domain:The function is usually evaluated on the hypercube xi 0, 10, for all i = 1, , d. Global optimum: for class go_benchmark.XinSheYang01(dimensions=2)2.2.5 Xin-She Yang 1 test objective function.This class defines the Xin-S

6、he Yang 1 global optimization problem. This is a multimodal minimization problem defined as follows:The variable is a random variable uniformly distributed in .Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 1 functionGlobal optimum: for for 2.2.6 XinSheYang02(dimensi

7、ons=2)Xin-She Yang 2 test objective function.This class defines the Xin-She Yang 2 global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 2 functionGlobal optimum: for for 2.2.7 XinSheY

8、ang03(dimensions=2)Xin-She Yang 3 test objective function.This class defines the Xin-She Yang 3 global optimization problem. This is a multimodal minimization problem defined as follows:Where, in this exercise, and .Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 3 fu

9、nctionGlobal optimum: for for 2.2.8 XinSheYang04(dimensions=2)Xin-She Yang 4 test objective function.This class defines the Xin-She Yang 4 global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Xin-

10、She Yang 4 functionGlobal optimum: for for 2.2.9 Damavandi(dimensions=2)Damavandi test objective function.This class defines the Damavandi global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Dama

11、vandi functionGlobal optimum: for for class go_benchmark.SineEnvelope(dimensions=2)SineEnvelope test objective function.This class defines the SineEnvelope global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two

12、-dimensional SineEnvelope functionGlobal optimum: for for 2.3 二維多峰多全局最優(yōu)解函數(shù)3、多維函數(shù)3.1多維單峰函數(shù)3.2多維多峰單全局最優(yōu)解函數(shù)3.2.1 Ackley3.2.2 MICHALEWICZ FUNCTIONDescription:Dimensions: d The Michalewicz function has d! local minima, and it is multimodal. The parameter m defines the steepness of they valleys and ridges

13、; a larger m leads to a more difficult search. The recommended value of m is m = 10. The function's two-dimensional form is shown in the plot above. Input Domain:The function is usually evaluated on the hypercube xi 0, , for all i = 1, , d. Global Minima:多維多峰多局部最優(yōu)解函數(shù)STYBLINSKI-TANG FUNCTIONDescription:Dimensions: d The Styblinski-Tang function is

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論