版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、1、一維函數(shù)一維單峰函數(shù)一維多峰單全局最優(yōu)解函數(shù)一維多峰多局部最優(yōu)解函數(shù)2、二維函數(shù)2.1二維單峰函數(shù)2.2 二維多峰單全局最優(yōu)解函數(shù)2.2.1 SHUBERT FUNCTIONDescription:Dimensions: 2 The Shubert function has several local minima and many global minima. The second plot shows the the function on a smaller input domain, to allow for easier viewing. Input Domain:The fun
2、ction is usually evaluated on the square xi -10, 10, for all i = 1, 2, although this may be restricted to the square xi -5.12, 5.12, for all i = 1, 2. Global Minimum:Schwefel Function2.2.2 EGGHOLDER FUNCTIONDescription:Dimensions: 2 The Eggholder function is a difficult function to optimize, because
3、 of the large number of local minima. Input Domain:The function is usually evaluated on the square xi -512, 512, for all i = 1, 2. Global Minimum:2.2.3 Levy 5 test objective function.This class defines the Levy 5 global optimization problem. This is a multimodal minimization problem defined as follo
4、ws:Here, represents the number of dimensions and for .Two-dimensional Levy 5 functionGlobal optimum: for .2.2.4 LANGERMANN FUNCTIONDescription:Dimensions: d The Langermann function is multimodal, with many unevenly distributed local minima. The recommended values of m, c and A, as given by Molga &am
5、p; Smutnicki (2005) are (for d = 2): m = 5, c = (1, 2, 5, 2, 3) and:Input Domain:The function is usually evaluated on the hypercube xi 0, 10, for all i = 1, , d. Global optimum: for class go_benchmark.XinSheYang01(dimensions=2)2.2.5 Xin-She Yang 1 test objective function.This class defines the Xin-S
6、he Yang 1 global optimization problem. This is a multimodal minimization problem defined as follows:The variable is a random variable uniformly distributed in .Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 1 functionGlobal optimum: for for 2.2.6 XinSheYang02(dimensi
7、ons=2)Xin-She Yang 2 test objective function.This class defines the Xin-She Yang 2 global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 2 functionGlobal optimum: for for 2.2.7 XinSheY
8、ang03(dimensions=2)Xin-She Yang 3 test objective function.This class defines the Xin-She Yang 3 global optimization problem. This is a multimodal minimization problem defined as follows:Where, in this exercise, and .Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 3 fu
9、nctionGlobal optimum: for for 2.2.8 XinSheYang04(dimensions=2)Xin-She Yang 4 test objective function.This class defines the Xin-She Yang 4 global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Xin-
10、She Yang 4 functionGlobal optimum: for for 2.2.9 Damavandi(dimensions=2)Damavandi test objective function.This class defines the Damavandi global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Dama
11、vandi functionGlobal optimum: for for class go_benchmark.SineEnvelope(dimensions=2)SineEnvelope test objective function.This class defines the SineEnvelope global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two
12、-dimensional SineEnvelope functionGlobal optimum: for for 2.3 二維多峰多全局最優(yōu)解函數(shù)3、多維函數(shù)3.1多維單峰函數(shù)3.2多維多峰單全局最優(yōu)解函數(shù)3.2.1 Ackley3.2.2 MICHALEWICZ FUNCTIONDescription:Dimensions: d The Michalewicz function has d! local minima, and it is multimodal. The parameter m defines the steepness of they valleys and ridges
13、; a larger m leads to a more difficult search. The recommended value of m is m = 10. The function's two-dimensional form is shown in the plot above. Input Domain:The function is usually evaluated on the hypercube xi 0, , for all i = 1, , d. Global Minima:多維多峰多局部最優(yōu)解函數(shù)STYBLINSKI-TANG FUNCTIONDescription:Dimensions: d The Styblinski-Tang function is
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024跨國廣告代理協(xié)議
- 2025年度產(chǎn)學(xué)研合作項(xiàng)目技術(shù)研發(fā)與市場應(yīng)用協(xié)議4篇
- 2024年04月浙江臺(tái)州銀行寧波分行社會(huì)招考(422)筆試歷年參考題庫附帶答案詳解
- 2025年度分手后子女撫養(yǎng)協(xié)議書范本下載3篇
- 2025年度城市綜合體場地服務(wù)合作合同4篇
- 2025年度國際商務(wù)大廈廠房租賃合同英文版3篇
- 2024版智能穿戴設(shè)備技術(shù)轉(zhuǎn)讓合同
- 2025年度廠房設(shè)備融資租賃與市場拓展合同4篇
- 2024年03月重慶重慶銀行貿(mào)易金融部招考筆試歷年參考題庫附帶答案詳解
- 2025年度產(chǎn)學(xué)研合作人才培養(yǎng)及項(xiàng)目支持協(xié)議4篇
- 2025年MEMS傳感器行業(yè)深度分析報(bào)告
- 《線控底盤技術(shù)》2024年課程標(biāo)準(zhǔn)(含課程思政設(shè)計(jì))
- 學(xué)校對口幫扶計(jì)劃
- 倉庫倉儲(chǔ)安全管理培訓(xùn)課件模板
- 風(fēng)力發(fā)電場運(yùn)行維護(hù)手冊
- 《3-6歲兒童學(xué)習(xí)與發(fā)展指南》專題培訓(xùn)
- 河道旅游開發(fā)合同
- 情人合同范例
- 建筑公司勞務(wù)合作協(xié)議書范本
- 安徽省合肥市2023-2024學(xué)年高一上學(xué)期物理期末試卷(含答案)
- 《基于杜邦分析法的公司盈利能力研究的國內(nèi)外文獻(xiàn)綜述》2700字
評(píng)論
0/150
提交評(píng)論