版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上反比例函數(shù)1、反比例函數(shù)圖象:反比例函數(shù)的圖像屬于以為對稱中心的中心對稱的 反比例函數(shù)圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與相交(K0)。2、性質(zhì):1.當(dāng)k>0時,圖象分別位于第一、三象限,同一個內(nèi),y隨x的增大而減?。划?dāng)k<0時,圖象分別位于二、,同一個象限內(nèi),y隨x的增大而增大。2.k>0時,函數(shù)在x<0上同為減函數(shù)、在x>0上同為減函數(shù);k<0時,函數(shù)在x<0上為增函數(shù)、在x>0上同為增函數(shù)。 為x0;為y0。 3.因為在y=k/x(k0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸
2、相交,也不可能與y軸相交。 4. 在一個反比例上任取兩點P,Q,過點P,Q分別作x軸,y軸的,與坐標(biāo)軸圍成的面積為S1,S2則S1S2=|K| 5. 反比例函數(shù)的圖象既是,又是,它有兩條 y=x y=-x(即第一三,二四象限角平分線),是坐標(biāo)原點。 6.若設(shè)y=mx與反比例函數(shù)y=n/x交于A、B兩點(m、n同號),那么A B兩點關(guān)于。 7.設(shè)在內(nèi)有反比例函數(shù)y=k/x和y=mx+n,要使它們有公共交點,則n2+4k·m(不小于)0。 8.反比例函數(shù)y=k/x的:x軸與y軸。 9.反比例函數(shù)關(guān)于正比例函數(shù)y=x,y=-x,并且關(guān)于原點中心對稱. 10.反比例上一點m向x、y分別做垂線
3、,交于q、w,則矩形mwqo(o為原點)的面積為|k| 11.k值相等的反比例函數(shù)重合,k值不相等的反比例函數(shù)永不相交。 12.|k|越大,反比例函數(shù)的圖象離坐標(biāo)軸的越遠。 13.反比例函數(shù)圖象是中心對稱圖形,對稱中心是原點 一次函數(shù)(1) 函數(shù)1、確定函數(shù)定義域的方法: (1)關(guān)系式為整式時,函數(shù)定義域為全體實數(shù); (2)關(guān)系式含有分式時,分式的分母不等于零; (3)關(guān)系式含有二次根式時,被開放方數(shù)大于等于零; (4)關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零; (5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。(2) 一次函數(shù)1、一次函數(shù)的定義一般地,形如(,是常數(shù),且)的函數(shù)
4、,叫做一次函數(shù),其中x是自變量。當(dāng)時,一次函數(shù),又叫做正比例函數(shù)。一次函數(shù)的解析式的形式是,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式當(dāng),時,仍是一次函數(shù)當(dāng),時,它不是一次函數(shù)正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)2、正比例函數(shù)及性質(zhì)一般地,形如y=kx(k是常數(shù),k0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式 y=kx (k不為零) k不為零 x指數(shù)為1 b取零當(dāng)k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;當(dāng)k<0時,直線y=kx經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減小(1) 解析式:y=k
5、x(k是常數(shù),k0)(2) 必過點:(0,0)、(1,k)(3) 走向:k>0時,圖像經(jīng)過一、三象限;k<0時,圖像經(jīng)過二、四象限(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸3、一次函數(shù)及性一般地,形如y=kxb(k,b是常數(shù),k0),那么y叫做x的一次函數(shù).當(dāng)b=0時,y=kxb即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù).注:一次函數(shù)一般形式 y=kx+b (k不為零) k不為零 x指數(shù)為1 b取任意實數(shù)一次函數(shù)y=kx+b的圖象是經(jīng)過(0,b)和(-,0)兩點的一條直線,我們
6、稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移)(1)解析式:y=kx+b(k、b是常數(shù),k0)(2)必過點:(0,b)和(-,0) (3)走向: k>0,圖象經(jīng)過第一、三象限;k<0,圖象經(jīng)過第二、四象限 b>0,圖象經(jīng)過第一、二象限;b<0,圖象經(jīng)過第三、四象限直線經(jīng)過第一、二、三象限 直線經(jīng)過第一、三、四象限直線經(jīng)過第一、二、四象限 直線經(jīng)過第二、三、四象限(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.(5)傾斜度:|k|越大,圖象越接近于y軸;
7、|k|越小,圖象越接近于x軸.(6)圖像的平移: 當(dāng)b>0時,將直線y=kx的圖象向上平移b個單位;當(dāng)b<0時,將直線y=kx的圖象向下平移b個單位.一次函數(shù),符號圖象性質(zhì)隨的增大而增大隨的增大而減小4、一次函數(shù)y=kxb的圖象的畫法.根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點:(0,b),.即橫坐標(biāo)或縱坐標(biāo)為0的點.b>0b<0b=0k>0經(jīng)過第一、二、三象限經(jīng)過第一、三、四象限經(jīng)過第一、三象限圖象從左到右上升,y隨x的增大而增大k
8、<0經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限圖象從左到右下降,y隨x的增大而減小5、正比例函數(shù)與一次函數(shù)之間的關(guān)系一次函數(shù)y=kxb的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移)正比例函數(shù)一次函數(shù)概 念一般地,形如y=kx(k是常數(shù),k0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù)一般地,形如y=kxb(k,b是常數(shù),k0),那么y叫做x的一次函數(shù).當(dāng)b=0時,是y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù).自變量范 圍X為全體實數(shù)圖 象一條直線必過點(0,0)、(1,k)(0,b)和(-,
9、0)走 向k>0時,直線經(jīng)過一、三象限;k<0時,直線經(jīng)過二、四象限k0,b0,直線經(jīng)過第一、二、三象限k0,b0直線經(jīng)過第一、三、四象限k0,b0直線經(jīng)過第一、二、四象限k0,b0直線經(jīng)過第二、三、四象限增減性k>0,y隨x的增大而增大;(從左向右上升)k<0,y隨x的增大而減小。(從左向右下降)傾斜度|k|越大,越接近y軸;|k|越小,越接近x軸圖像的平 移b>0時,將直線y=kx的圖象向上平移個單位;b<0時,將直線y=kx的圖象向下平移個單位.6、正比例函數(shù)和一次函數(shù)及性質(zhì)7、直線()與()的位置關(guān)系(1)兩直線平行且(2)兩直線相交(3)兩直線重合
10、且(4)兩直線垂直8、用待定系數(shù)法確定函數(shù)解析式的一般步驟:(1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關(guān)系式;(2)將x、y的幾對值或圖象上的幾個點的坐標(biāo)代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程;(3)解方程得出未知系數(shù)的值;(4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式.9、一元一次方程與一次函數(shù)的關(guān)系任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值. 從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點的橫坐標(biāo)的值.10、一次函數(shù)與一元一次不等式的關(guān)系任何一個一元一次
11、不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(?。┯?時,求自變量的取值范圍.11、一次函數(shù)與二元一次方程組 (1)以二元一次方程ax+by=c的解為坐標(biāo)的點組成的圖象與一次函數(shù)y=的圖象相同.(2) 二元一次方程組的解可以看作是兩個一次函數(shù)y=和y=的圖象交點.二次函數(shù)一、二次函數(shù)概念:1二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。 這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零二次函數(shù)的定義域是全體實數(shù)2. 二次函數(shù)的結(jié)構(gòu)特征: 等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高
12、次數(shù)是2 是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項二、二次函數(shù)的基本形式 一般式: 頂點式: 零點式:圖像定義域?qū)ΨQ軸頂點坐標(biāo)值域單調(diào)區(qū)間遞減遞增遞增遞減當(dāng)時,二次函數(shù)的圖像和軸有兩個交點,線段當(dāng)時,二次函數(shù)的圖像和軸有兩個重合的交點特別地,當(dāng)且僅當(dāng)時,二次函數(shù)為偶函數(shù)1. 二次函數(shù)基本形式:的性質(zhì):a 的絕對值越大,拋物線的開口越小。的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減??;時,有最小值向下軸時,隨的增大而減??;時,隨的增大而增大;時,有最大值2. 的性質(zhì):上加下減。的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減??;時,有最
13、小值向下軸時,隨的增大而減??;時,隨的增大而增大;時,有最大值3. 的性質(zhì):左加右減。的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減??;時,有最小值向下X=h時,隨的增大而減?。粫r,隨的增大而增大;時,有最大值4. 的性質(zhì):的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值向下X=h時,隨的增大而減??;時,隨的增大而增大;時,有最大值三、二次函數(shù)圖象的平移 1. 平移步驟:方法一: 將拋物線解析式轉(zhuǎn)化成頂點式,確定其頂點坐標(biāo); 保持拋物線的形狀不變,將其頂點平移到處,具體平移方法如下: 2. 平移規(guī)律 在原有函數(shù)的基礎(chǔ)
14、上“值正右移,負左移;值正上移,負下移”概括成八個字“左加右減,上加下減” 方法二:沿軸平移:向上(下)平移個單位,變成(或)沿軸平移:向左(右)平移個單位,變成(或) 四、二次函數(shù)與的比較從解析式上看,與是兩種不同的表達形式,后者通過配方可以得到前者,即,其中五、二次函數(shù)圖象的畫法五點繪圖法:利用配方法將二次函數(shù)化為頂點式,確定其開口方向、對稱軸及頂點坐標(biāo),然后在對稱軸兩側(cè),左右對稱地描點畫圖.一般我們選取的五點為:頂點、與軸的交點、以及關(guān)于對稱軸對稱的點、與軸的交點,(若與軸沒有交點,則取兩組關(guān)于對稱軸對稱的點).畫草圖時應(yīng)抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,與軸的交點.六、
15、二次函數(shù)的性質(zhì)1. 當(dāng)時,拋物線開口向上,對稱軸為,頂點坐標(biāo)為當(dāng)時,隨的增大而減小;當(dāng)時,隨的增大而增大;當(dāng)時,有最小值 2. 當(dāng)時,拋物線開口向下,對稱軸為,頂點坐標(biāo)為當(dāng)時,隨的增大而增大;當(dāng)時,隨的增大而減??;當(dāng)時,有最大值七、二次函數(shù)解析式的表示方法1. 一般式:(,為常數(shù),);2. 頂點式:(,為常數(shù),);3. 兩根式:(,是拋物線與軸兩交點的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點式,但并非所有的二次函數(shù)都可以寫成交點式,只有拋物線與軸有交點,即時,拋物線的解析式才可以用交點式表示二次函數(shù)解析式的這三種形式可以互化.八、二次函數(shù)的圖象與各項系數(shù)之間的關(guān)系 1. 二次
16、項系數(shù)二次函數(shù)中,作為二次項系數(shù),顯然 當(dāng)時,拋物線開口向上,的值越大,開口越小,反之的值越小,開口越大; 當(dāng)時,拋物線開口向下,的值越小,開口越小,反之的值越大,開口越大總結(jié)起來,決定了拋物線開口的大小和方向,的正負決定開口方向,的大小決定開口的大小2. 一次項系數(shù) 在二次項系數(shù)確定的前提下,決定了拋物線的對稱軸 在的前提下,當(dāng)時,即拋物線的對稱軸在軸左側(cè);當(dāng)時,即拋物線的對稱軸就是軸;當(dāng)時,即拋物線對稱軸在軸的右側(cè) 在的前提下,結(jié)論剛好與上述相反,即當(dāng)時,即拋物線的對稱軸在軸右側(cè);當(dāng)時,即拋物線的對稱軸就是軸;當(dāng)時,即拋物線對稱軸在軸的左側(cè)的符號的判定:對稱軸在軸左邊則,在軸的右側(cè)則,概括
17、的說就是“左同右異” 3. 常數(shù)項 當(dāng)時,拋物線與軸的交點在軸上方,即拋物線與軸交點的縱坐標(biāo)為正; 當(dāng)時,拋物線與軸的交點為坐標(biāo)原點,即拋物線與軸交點的縱坐標(biāo)為; 當(dāng)時,拋物線與軸的交點在軸下方,即拋物線與軸交點的縱坐標(biāo)為負 總結(jié)起來,決定了拋物線與軸交點的位置 總之,只要都確定,那么這條拋物線就是唯一確定的二次函數(shù)解析式的確定:根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點,選擇適當(dāng)?shù)男问剑拍苁菇忸}簡便一般來說,有如下幾種情況:1. 已知拋物線上三點的坐標(biāo),一般選用一般式;2. 已知拋物線頂點或?qū)ΨQ軸或最大(?。┲?,一般選用頂點式;3.
18、已知拋物線與軸的兩個交點的橫坐標(biāo),一般選用兩根式;4. 已知拋物線上縱坐標(biāo)相同的兩點,常選用頂點式九、二次函數(shù)圖象的對稱二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點式表達 1. 關(guān)于軸對稱 關(guān)于軸對稱后,得到的解析式是; 關(guān)于軸對稱后,得到的解析式是; 2. 關(guān)于軸對稱 關(guān)于軸對稱后,得到的解析式是; 關(guān)于軸對稱后,得到的解析式是; 3. 關(guān)于原點對稱 關(guān)于原點對稱后,得到的解析式是; 關(guān)于原點對稱后,得到的解析式是; 4. 關(guān)于頂點對稱(即:拋物線繞頂點旋轉(zhuǎn)180°) 關(guān)于頂點對稱后,得到的解析式是;關(guān)于頂點對稱后,得到的解析式是 5. 關(guān)于點對稱 關(guān)于點對稱后,得到的解析式是 根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此永遠不變求拋物線的對稱拋物線的表達式時,可以依據(jù)題意或方便運算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達式已知的拋物線)的頂點坐標(biāo)及開口方向,再確定其對稱拋物線的頂點坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達式十、二次函數(shù)與一元二次方程:1. 二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與軸交點情況):一元二次方程是二次函數(shù)當(dāng)函數(shù)值時的特殊情況.圖象與軸的交點個數(shù): 當(dāng)時,圖象與軸交于兩點,其中的是一元二次方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個人房屋買賣委托代理協(xié)議(含裝修監(jiān)管)4篇
- 二零二五版?zhèn)}儲設(shè)備定期檢查與維護協(xié)議3篇
- 照明智能控制施工方案
- 2025版高端醫(yī)療設(shè)備委托加工與知識產(chǎn)權(quán)保護合同3篇
- 二零二五版離婚協(xié)議書中子女撫養(yǎng)協(xié)議范本2篇
- 鉆孔樁安全施工方案
- 二零二五年度父母子女房產(chǎn)繼承權(quán)協(xié)議書:子女房產(chǎn)權(quán)益確認及調(diào)整3篇
- 葡萄棚建設(shè)施工方案
- 2025版自動駕駛車輛測試運營協(xié)議書模板3篇
- 空調(diào)維修施工方案
- 六年級數(shù)學(xué)上冊100道口算題(全冊完整版)
- 八年級數(shù)學(xué)下冊《第十九章 一次函數(shù)》單元檢測卷帶答案-人教版
- 帕薩特B5維修手冊及帕薩特B5全車電路圖
- 高三數(shù)學(xué)開學(xué)第一課
- 系統(tǒng)解剖學(xué)考試重點筆記
- 小學(xué)五年級解方程應(yīng)用題6
- 云南省地圖含市縣地圖矢量分層地圖行政區(qū)劃市縣概況ppt模板
- 年月江西省南昌市某綜合樓工程造價指標(biāo)及
- 暖通空調(diào)基礎(chǔ)知識及識圖課件
- 作物栽培學(xué)課件棉花
- 防滲墻工程施工用表及填寫要求講義
評論
0/150
提交評論