


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、學(xué)習(xí)總結(jié):中考幾何題證明思路總結(jié)幾何證明題重點考察的是學(xué)生的邏輯思維能力,能通過嚴(yán)密的"因為"、"所以"邏輯將條件一步步轉(zhuǎn)化為所要證明的結(jié)論。這類題目出法相當(dāng)靈活,不像代數(shù)計算類題目容易總結(jié)出固定題型的固定解法,而更看重的是對重要模型的總結(jié)、常見思路的總結(jié)。所以本文對中考中最常出現(xiàn)的若干結(jié)論做了一個較為全面的思路總結(jié)。一、證明兩線段相等 1.兩全等三角形中對應(yīng)邊相等。 2.同一三角形中等角對等邊。 3.等腰三角形頂角的平分線或底邊的高平分底邊。 4.平行四邊形的對邊或?qū)蔷€被交點分成的兩段相等。 5.直角三角形斜邊的中點到三頂點距離相等。 6.線段垂直平
2、分線上任意一點到線段兩段距離相等。 7.角平分線上任一點到角的兩邊距離相等。 8.過三角形一邊的中點且平行于第三邊的直線分第二邊所成的線段相等。9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。 10.圓外一點引圓的兩條切線的切線長相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。 11.兩前項(或兩后項)相等的比例式中的兩后項(或兩前項)相等。 12.兩圓的內(nèi)(外)公切線的長相等。 13.等于同一線段的兩條線段相等。二、證明兩角相等1.兩全等三角形的對應(yīng)角相等。2.同一三角形中等邊對等角。3.等腰三角形中,底邊上的中線(或高)平分頂角。4.兩條平行線的同位角、內(nèi)錯
3、角或平行四邊形的對角相等。5.同角(或等角)的余角(或補(bǔ)角)相等。6.同圓(或圓)中,等弦(或?。┧鶎Φ膱A心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。8.相似三角形的對應(yīng)角相等。9.圓的內(nèi)接四邊形的外角等于內(nèi)對角。10.等于同一角的兩個角相等三、證明兩直線平行 1.垂直于同一直線的各直線平行。 2.同位角相等,內(nèi)錯角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。 3.平行四邊形的對邊平行。 4.三角形的中位線平行于第三邊。 5.梯形的中位線平行于兩底。 6.平行于同一直線的
4、兩直線平行。 7.一條直線截三角形的兩邊(或延長線)所得的線段對應(yīng)成比例,則這條直線平行于第三邊。四、證明兩直線互相垂直1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。2.三角形中一邊的中線若等于這邊一半,則這一邊所對的角是直角。3.在一個三角形中,若有兩個角互余,則第三個角是直角。4.鄰補(bǔ)角的平分線互相垂直。5.一條直線垂直于平行線中的一條,則必垂直于另一條。6.兩條直線相交成直角則兩直線垂直。7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。8.利用勾股定理的逆定理。9.利用菱形的對角線互相垂直。10.在圓中平分弦(或?。┑闹睆酱怪庇谙摇?1.利用半圓上的圓周角是直角。五、證明線段
5、的和、差、倍、分1.作兩條線段的和,證明與第三條線段相等。 2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。3.延長短線段為其二倍,再證明它與較長的線段相等。4.取長線段的中點,再證其一半等于短線段。5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。六、證明角的和、差、倍、分1.作兩個角的和,證明與第三角相等。2.作兩個角的差,證明余下部分等于第三角。3.利用角平分線的定義。4.三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。七、證明兩線段不等1.同一三角形中,大角對大邊。2.垂線段最短。3.三角形兩邊之和大
6、于第三邊,兩邊之差小于第三邊。4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。5.同圓或等圓中,弧大弦大,弦心距小。6.全量大于它的任何一部分。八、證明兩角不等1.同一三角形中,大邊對大角。2.三角形的外角大于和它不相鄰的任一內(nèi)角。3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。4.同圓或等圓中,弧大則圓周角、圓心角大。5.全量大于它的任何一部分。九、證明比例式或等積式1.利用相似三角形對應(yīng)線段成比例。 2.利用內(nèi)外角平分線定理。 3.平行線截線段成比例。 4.直角三角形中的比例中項定理即射影定理。 5.與圓有關(guān)的比例定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國盆景行業(yè)發(fā)展趨勢規(guī)劃分析報告
- 柳州城市職業(yè)學(xué)院《城鄉(xiāng)規(guī)劃原理C》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東體育學(xué)院《有機(jī)化學(xué)I2》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州城市理工學(xué)院《交換原理與NGN》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025年海南省安全員考試題庫附答案
- 遼寧工程技術(shù)大學(xué)《領(lǐng)導(dǎo)科學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東商業(yè)職業(yè)技術(shù)學(xué)院《生物化學(xué)與分子生物學(xué)(含遺傳學(xué))》2023-2024學(xué)年第二學(xué)期期末試卷
- 鄭州城市職業(yè)學(xué)院《英語高級視聽說》2023-2024學(xué)年第二學(xué)期期末試卷
- 德宏師范高等??茖W(xué)?!?0世紀(jì)西方文學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湛江科技學(xué)院《土木工程施工技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- Python金融數(shù)據(jù)分析與挖掘(微課版) 教案全套 黃恒秋
- 中建10t龍門吊安拆安全專項施工方案
- 國內(nèi)外測井技術(shù)現(xiàn)狀與展望文檔
- 《銷售人員的培訓(xùn)》課件
- 國防動員課件教學(xué)課件
- 特殊作業(yè)安全管理監(jiān)護(hù)人專項培訓(xùn)課件
- 衛(wèi)生技術(shù)人員準(zhǔn)入制度
- 自行車被盜案匯報課件
- 律師事務(wù)所案件管理手冊
- 《節(jié)水評價技術(shù)導(dǎo)則》
- 簡單酒店裝修合同書范本(30篇)
評論
0/150
提交評論