初三數(shù)學(xué)你能證明它們嗎教學(xué)案例_第1頁
初三數(shù)學(xué)你能證明它們嗎教學(xué)案例_第2頁
初三數(shù)學(xué)你能證明它們嗎教學(xué)案例_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、.初三數(shù)學(xué)你能證明它們嗎教學(xué)案例【】初三數(shù)學(xué)你能證明它們嗎教學(xué)案例學(xué)習(xí)本文理解作為證明根底的幾條公理的內(nèi)容,掌握證明的根本步驟和書寫格式。希望給大家?guī)韼椭阂?、教學(xué)目的:1、理解作為證明根底的幾條公理的內(nèi)容,掌握證明的根本步驟和書寫格式。2、經(jīng)歷探究-發(fā)現(xiàn)-猜測(cè)-證明的過程。可以用綜合法證明等腰三角形的關(guān)性質(zhì)定理和斷定定理。3、結(jié)合實(shí)例休會(huì)反證的含義。唐宋或更早之前,針對(duì)“經(jīng)學(xué)“律學(xué)“算學(xué)和“書學(xué)各科目,其相應(yīng)傳授者稱為“博士,這與當(dāng)今“博士含義已經(jīng)相去甚遠(yuǎn)。而對(duì)那些特別講授“武事或講解“經(jīng)籍者,又稱“講師。“教授和“助教均原為學(xué)官稱謂。前者始于宋,乃“宗學(xué)“律學(xué)“醫(yī)學(xué)“武學(xué)等科目的講授者;

2、而后者那么于西晉武帝時(shí)代即已設(shè)立了,主要協(xié)助國(guó)子、博士培養(yǎng)生徒。“助教在古代不僅要作入流的學(xué)問,其教書育人的職責(zé)也十清楚晰。唐代國(guó)子學(xué)、太學(xué)等所設(shè)之“助教一席,也是當(dāng)朝打眼的學(xué)官。至明清兩代,只設(shè)國(guó)子監(jiān)國(guó)子學(xué)一科的“助教,其身價(jià)不謂顯赫,也稱得上朝廷要員。至此,無論是“博士“講師,還是“教授“助教,其今日老師應(yīng)具有的根本概念都具有了。二、教學(xué)重點(diǎn):理解作為證明根底的幾條公理的內(nèi)容,掌握證明的根本步驟和書寫格式。教學(xué)難點(diǎn):可以用綜合法證明等腰三角形的關(guān)性質(zhì)定理和斷定定理。三、教學(xué)方法:觀察法。這個(gè)工作可讓學(xué)生分組負(fù)責(zé)搜集整理,登在小黑板上,每周一換。要求學(xué)生抽空抄錄并且閱讀成誦。其目的在于擴(kuò)大學(xué)

3、生的知識(shí)面,引導(dǎo)學(xué)生關(guān)注社會(huì),熱愛生活,所以內(nèi)容要盡量廣泛一些,可以分為人生、價(jià)值、理想、學(xué)習(xí)、成長(zhǎng)、責(zé)任、友誼、愛心、探究、環(huán)保等多方面。如此下去,除假期外,一年便可以積累40多那么材料。假如學(xué)生的腦海里有了眾多的鮮活生動(dòng)的材料,寫起文章來還用亂翻參考書嗎?四、教學(xué)過程:復(fù)習(xí):1、 什么是等腰三角形?2、 你會(huì)畫一個(gè)等腰三角形嗎?并把你畫的等腰三角形栽剪下來。3、試用折紙的方法回憶等腰三角形有哪些性質(zhì)?新課講解:在?證明一?一章中,我們已經(jīng)證明了有關(guān)平行線的一些結(jié)論,運(yùn)用下面的公理和已經(jīng)證明的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。同學(xué)們和我一起來回憶上學(xué)期學(xué)過的公理w 本套教材選用如下命

4、題作為公理 :w 1.兩直線被第三條直線所截,假如同位角相等,那么這兩條直線平行; w 2.兩條平行線被第三條直線所截,同位角相等; w 3.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等; SASw 4.兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等; ASAw 5.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等; SSSw 6.全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等. 由公理5、3、4、6可容易證明下面的推論:推論 兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。AAS證明過程:D,E,BC=EF求證:ABCDEF證明:D,EB+C=180,E+F=180三角形內(nèi)角和等于180C=180A+F=180D+C=F等量代換BC=EFABCD

5、EFASA這個(gè)推論雖然簡(jiǎn)單,但也應(yīng)讓學(xué)生進(jìn)展證明,以熟悉的根本要求和步驟,為下面的推理證明做準(zhǔn)備。議一議:1還記得我們探究過的等腰三角形的性質(zhì)嗎?2你能利用已有的公理和定理證明這些結(jié)論嗎?等腰三角形包括等邊三角形的性質(zhì)學(xué)生已經(jīng)探究過,這里先讓學(xué)生盡可能回憶出來,然后再考慮哪些可以立即證明。定理:等腰三角形的兩個(gè)底角相等。這一定理可以簡(jiǎn)單表達(dá)為:等邊對(duì)等角。:如圖,在ABC中,AB=AC。求證:C我們剛剛利用折疊的方法說明了這兩個(gè)底角相等。實(shí)際上,折痕將等腰三角形分成了兩個(gè)全等三角形。能否通過作一條線段,得到兩個(gè)全等的三角形,從而證明這兩個(gè)底角相等呢?證明:取BC的中點(diǎn)D,連接AD。AB=AC,

6、BD=CD,AD=AD,ABCACD SSSC 全等三角形的對(duì)應(yīng)邊角相等讓同學(xué)們通過探究、合作交流找出其他的證明方法。想一想:在上圖中,線段AD還具有怎樣的性質(zhì)?為什么?由此你能得到什么結(jié)論?應(yīng)讓學(xué)生回憶前面的證明過程,考慮線段AD具有的性質(zhì)和特征,從而得到結(jié)論,這一結(jié)合通常簡(jiǎn)述為三線合一。推論 等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。隨堂練習(xí):做教科書第4頁第1,2題。課堂小結(jié):通過本課的學(xué)習(xí)我們理解了作為根底的幾條公理的內(nèi)容,掌握證明的根本步驟和書寫格式。經(jīng)歷探究-發(fā)現(xiàn)-猜測(cè)-證明的過程??梢杂镁C合法證明等腰三角形的關(guān)性質(zhì)定理和斷定定理。探體會(huì)了反證法的含義。要練說,得練聽。聽是說的前提,聽得準(zhǔn)確,才有條件正確模擬,才能不斷地掌握高一級(jí)程度的語言。我在教學(xué)中,注意聽說結(jié)合,訓(xùn)練幼兒聽的才能,課堂上,我特別重視老師的語言,我對(duì)幼兒說話,注意聲音清楚,上下起伏,抑揚(yáng)有致,富有吸引力,這樣能引起幼兒的注意。當(dāng)我發(fā)現(xiàn)有的幼兒不專心聽別人發(fā)言時(shí),就隨時(shí)表揚(yáng)那些靜聽的幼兒,或是讓他重復(fù)別人說過的內(nèi)容,抓住教育時(shí)機(jī),要求他們專心聽,用心記。平時(shí)我還通過各種興趣活動(dòng),培養(yǎng)幼兒邊聽邊記,邊聽邊想,邊聽邊說的才能,如聽詞對(duì)詞,聽詞句說意思,聽句子辯正誤,聽故事講述故事

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論