




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、DeformationAnalysisofPrestressedContinuousSteel-ConcreteCompositeBeamsJianguoNie1;MuxuanTao2;C.S.Cai3;andShaojingLi4Abstract:Deformationcalculationofprestressedcontinuoussteel-concretecompositebeamsaccountingfortheslipeffectbetweenthesteelandconcreteinterfaceunderserviceloadsisanalyzed.Asimpliedanal
2、yticalmodelispresented.Basedonthismodel,formulasforpredictingthecrackingregionofconcreteslabneartheinteriorsupportsandtheincreaseoftheprestressingtendonforcearederived.Atable for calculating the midspan deection of two-span prestressed continuous composite beams is also proposed. It is found that th
3、einternalforceoftheprestressingtendonunderserviceloadscanbeaccuratelycalculatedusingtheproposedformulas.Byignoringtheincreaseofthetendonforce,thecalculateddeectionareoverestimated,andconsideringtheincreaseofthetendonforcecansignicantlyimprovetheaccuracyofanalyticalpredictions.Asthecalculatedvaluessh
4、owgoodagreementwiththetestresults,theproposedformulascan be reliably applied to the deformation analysis of prestressed continuous composite beams. Finally, based on the formulas forcalculating the deformation of two-span prestressed continuous composite beams, a general method for deformation analy
5、sis of pre-stressedcontinuouscompositebeamsisproposed.DOI:10.1061/ASCEST.1943-541X.0000067CEDatabasesubjectheadings:Prestressedconcrete;Compositebeams;Deformation;Deection;Cracking;Concreteslabs;Con-tinuousbeams.Introduction2 increasing the ultimate loading capacity; 3 decreasing thedeformation unde
6、r service loads; 4 being favorable in crack-widthcontrol;5fullyusingthematerialsandthusreducingthestructural height and overall dead load; and 6 improving thefatigueandfracturebehavior.Continuous steel-concrete composite beams are widely used inbuildingsandbridgesforhigherspan/depthratiosandlessdeec
7、-tionetc.,whichresultsinsuperioreconomicalperformancecom-pared with simply supported composite beams. For continuouscomposite beams, negative bending near interior supports willresultinearlycrackingofconcreteslabandreductionofstiffness.Whenbeamsaredesignedforspanlengthsandloadsgreaterthanusual, the
8、requirement of serviceability limit state due to unac-ceptabledeectionandcrackwidthwouldrequireusingprestress-ingtechnique.Since Szilard 1959 suggested a method for the design andanalysisofprestressedsteel-concretecompositebeamsconsider-ingtheeffectsofconcreteshrinkageandcreep,manyresearchershave de
9、veloped methods for analyzing the behavior of simplysupportedprestressedcompositebeamsHoadley1963;Klaiberetal.1982;Dunkeretal.1986;Saadatmanesh1986;Saadatmaneshetal.1989a,b,c;Albrechtetal.1995,Nieetal.2007 .However,continuous prestressed composite beams have not been re-searched until the late 1980s
10、 Troitsky and Rabbani 1987;Troitsky 1990; DallAsta and Dezi 1998, Ayyub et al. 1990,1992a,b;DallAstaandZona2005.Asaresult,prestressedcon-tinuouscompositebeamshavenotwidelybeenusedpartlyduetothelackofdesigntheory.In fact, the behavior of prestressed continuous compositebeamsdependsontheinteractionbet
11、weenfourmaincomponents:thereinforcedconcreteslab,thesteelproleofbeams,theshearconnections, and the prestressing tendons, which makes pre-stressedcontinuouscompositebeamsmorecomplexthanconven-tional ones. DallAsta and Zona 2005 proposed a nonlinearniteelementmodelsimulatingthebehaviorofprestressedcon
12、-tinuouscompositebeamsaccurately.Thisnumericalapproachisavery powerful research tool for analyzing the externally pre-stressedstructures,butitperhapsistoocomplicatedforaroutinedesignpractice.Comparedwithconventionalsteel-concretecompositebeams,prestressedsteel-concretecompositebeamshaveafewmajorad-v
13、antages: 1 extending the elastic range of structural behavior;1Professor,Dept.ofCivilEngineering,KeyLaboratoryofStructuralEngineeringandVibrationofChinaEducationMinistry,TsinghuaUniv.,Beijing100084,China.2Ph.D. Candidate, Dept. of Civil Engineering, Key Laboratory ofStructural Engineering and Vibrat
14、ion of China Education Ministry,Tsinghua Univ., Beijing 100084, China corresponding author . E-mail:dmh033AssociateProfessor,Dept.ofCivilandEnvironmentalEngineering,LouisianaStateUniv.,BatonRouge,LA,70803;presently,AdjunctPro-fessor,SchoolofCivilEngineeringandArchitecture,ChangshaUniv.ofScienceandTe
15、chnology,Changsha,China.4Formerly,GraduateStudent,Dept.ofCivilEngineering,KeyLabo-ratoryofStructuralEngineeringandVibrationofChinaEducationMin-istry,TsinghuaUniv.,Beijing100084,China.Note.ThismanuscriptwassubmittedonAugust10,2008;approvedon April 20, 2009; published online on October 15, 2009. Discu
16、ssionperiodopenuntilApril1,2010;separatediscussionsmustbesubmittedfor individual papers. This paper is part of the Journal of StructuralEngineering,Vol.135,No.11,November1,2009.©ASCE,ISSN0733-9445/2009/11-13771389/$25.00.Asprestressingtechniqueisaneffectivewaytoreducedefor-mation and crack widt
17、h under service loads, particular attentionhastobepaidtothedeformationcalculationofprestressingcon-tinuouscompositebeams.Themainobjectiveofthisresearchistodevelopcalculationmethodsforthedeformationofprestress-ing continuous composite beams based on the reduced stiffnessJOURNALOFSTRUCTURALENGINEERING
18、©ASCE/NOVEMBER2009/1377Downloaded 19 Feb 2012 to 30. Redistribution subject to ASCE license or copyright. Visit Thedownwardconcentratedforceappliedbytendonsattheinte-rior support is not shown in the gure as the force is applieddirectlyonthesupport.Therigidi
19、tyalongthebeamcanbecon-sideredasunchangedinthisstagesincethecrackingofconcreteusually does not occur.The section properties can be calculatedby the transformed section method ignoring the slip effect be-tweensteelandconcreteinterfaceatthisstage.Itisassumedthatthedistributionofmomentalongthebeamdueto
20、theprestressingforcekeepsunchanged.Oncealltheparametershavebeendeter-mined,deformationintherststage f1canbedirectlycalculatedbymethodsofstructuremechanics.Fig.1.Sketchoftwo-spanprestressedcontinuouscompositebeammethodthatwasdevelopedforconventionalcontinuouscompos-itebeamsNieandCai2003.Theproposedme
21、thod,veriedbytestresults,issuitablefordesignpractice.In the second stage shown in Fig. 2b, application of theexternal force P results in the increase of downward deectionf andachangeofprestressingtendonforceT.Intheregionof2TheoreticalStudysaggingmoment,thereducedexuralstiffnessB=E1I1/1+ isusedduetot
22、heslipeffects,whereisstiffnessreductioncoef-cient according to the reduced stiffness method Nie and Cai2003,andtheaxialstiffnessEAiscalculatedbythetransformedsectionmethod.IntheregionofhoggingmomentintherangeofnL neareachsideoftheinteriorsupports,concreteisconsideredno longer in service due to crack
23、ing. In this case the bendingrigidityE2I2 andaxialrigidityE2A2 canonlyincludethecontri-butionofthereinforcementandsteelmaterials,andparameterandaredenedas=B/E2I2,and=EA/E2A2.Actually,inthesecondstage,concreteinthehoggingmomentmaystillcontributetostiffnessbecauseoftheprestressingforce.Therefore, the
24、partial interaction between the steel and concreteshould be considered for a rational analysis. For simplicity, thiskind of interaction effect is considered in the present study byadjustingthevalueofnL insteadofactuallymodifyingthestiff-nessofcompositebeamsnearthesupports,whichresultsinonlysmallerro
25、rsaswillbeveriedbytheexperimentsanddiscussedlater.AnalyticalModelPrestressed continuous composite beams discussed in this paperareshowninFig.1wheretheprestressingtendonsarelaidoutasfold lines or straight lines for the convenience of construction.Thestraightlinescanbeconsideredasaspecialcaseofthefold
26、-linetypewith=0incalculation.Thepositionoftendonscanbeeitherinternalorexternal,whichwillnotinuencethemethodofanalysis.Thus,theresearchinterestinthispaperisconcentratedonatwo-spanprestressedcontinuouscompositebeamwithfold-line tendons as shown in Fig. 1, and the methodology can beappliedtootherkindso
27、fprestressedcontinuouscompositebeams.Thecalculationmodelofprestressedsteel-concretecompositebeamsisshowninFig.2.Theprocessofloadingcanbedividedinto two stages. In the rst stage shown in Fig. 2a, beams areinitially prestressed by tendons and the equivalent loads appliedto the continuous beams by tend
28、ons are composed of two parts.TherstpartincludesaxialcompressionforceT andmoment0T0e0atthebeamends,wheree0=distancefromthebeamanchortotheneutralaxisofthetransformedsection,positivebelowneu-tral axis. The second part includes vertical concentrated loadsappliedbytendons.ForceequilibriumshowninFig.3giv
29、esthevalueoftheequivalentconcentrateforceFappliedbythetendonsasT0sin,whichequalstoT0approximatelyasisverysmall.Inordertoobtainthedeectionofthecompositebeamsinthisstage, the length of cracking region of concrete slab at interiorsupports, dened by n, should be determined rst. For conven-tionalcontinuo
30、uscompositebeams,itisfoundinpreviousstudiesandexperimentsthattaking0.15forthenvaluewillbeaccurateenough for design Nie et al. 2004. However, for prestressedcontinuous composite beams, the length of cracking region ofconcreteslabissmallerthantheconventionones.Furthermore,nisrelatedtotheprestressingde
31、greedirectly,whichhasbeenveri-ed by tests. The other parameter T is also very essential forcalculatingthedeection.Since the materials are generally linear elastic under serviceload conditions, the principle of superposition can be used toobtainthetotaldeectionas f1+f2,where f1canbecalculateddirectly
32、bymethodsofstructuralmechanics.Inthisstudy,wearemore concerned about the increase of deection under serviceloads, i.e., f2. Therefore, this paper will only investigate theincrease of deection in the second stage, and for convenience,f2 will be rewritten as f hereafter.According to the discussionmade
33、above,thecoreofdeformationcalculationistodeterminethe values of n and T, which will be discussed further in thefollowingparts.Fig. 2. Calculation model of prestressed continuous steel-concretecompositebeam:arstloadingstage;bsecondloadingstageThecableslipatthesaddlepointsisacomplexbehavioroftheextern
34、ally prestressed composite beams. The slip friction at thesaddle points can inuence the behavior of beams under serviceloads. Negligible friction occurs by using individually coatedsingle-strand tendons Conti et al. 1993 and the assumption ofnegligiblefrictioncanbefoundinthepreviousmodelDallAstaand
35、Zona 2005. This assumption is also used in the followinganalyticalstudies.Fig.3.Equivalentloadappliedtothebeambytendons1378/JOURNALOFSTRUCTURALENGINEERING©ASCE/NOVEMBER2009Downloaded 19 Feb 2012 to 30. Redistribution subject to ASCE license or copyright. Visit http:/www.ascelibrary
36、.org51Mk=0.85Mek= m1mPkL640where Mek=moment due to Pk ignoring the moment redistribu-tion.The relationship between the service load and the initial pre-stressingforcecanbederivedusingEqs.5and6as 40T051m1mL 2eW20T017 0Pk=+7AUndertheapplicationofexternalforceandprestressingforce,thedistributionofmomen
37、talongthebeamisshownasFigs.4 bandc, respectively. The tension stress at the top of concrete at theboundaryofthecrackingregionequalstozero,whichleadstoMTx=nL+MPx=nLT=08WAFig.4.Theoreticalanalysisofthelengthofcrackingregionofcon-creteslab:acalculationmodeloftwo-spanprestressedcontinuouscompositebeams;
38、bmomentdistributionduetoprestressingtendonforce;andcmomentdistributionduetoexternalloadswhere T=tendon force under service load conditions. Comparedwiththeinitialprestressingforce,theincreaseoftendonforceisrelatively small, and T can be taken proximately as T0; MTx=moment distribution along the beam
39、 due to the prestressingforce,andMPx=momentdistributionalongthebeamduetotheserviceload.TheyarecalculatedasPredictionofCrackingRegionofConcreteSlabx=3Te02 Lx21Te0+ 23m2+32m+1 TxIn this part, the length of cracking region of concrete slab overinteriorsupportswillbetheoreticallyanalyzedbasedonthecal-cu
40、lation model shown in Fig. 4a. After the initial force T0 isprestressed,astructuralanalysisgivesthesaggingmomentattheinteriorsupportasMT23m1mTL0xnL951405151=T0e0+32m1mT0LMPx=m240m1 Pkx+ m1mPkL0xnLMT0140210Accordingly,theinitialcompressivestressatthetopofconcreteslabattheinteriorsupportiscalculatedas
41、Introducing Eqs. 7, 9, and 10 into Eq. 8 leads to the ex-pressionofnasafunctionofpc=MT0+T0=AT0e0+2W3m1mT0L2W+TA2A10n=BCA11Wwhere W=section modulus of transformed composite section atthe top of concrete ange and A=cross-sectional area of trans-formedsection.Themomentneededtoeliminatethecompressivestr
42、essattheinteriorsupportisobtainedaswhereA,B,andCcanbecalculatedas1W+321mme0LA=2+Ae0 3331 mL+mB=2+ m+22e0M0=pcW=12T0e0+32m1mT0L+TA0W3C=51m251m4051m251mTheprestressingdegreeisdenedas=MM40From Eq. 11 we can see that the main factors inuencing therangeofconcretecrackingregionincludetheprestressingdegree
43、,theparameterW/Ae0,theparametermL/e0,andtheloadingpositionm.TheireffectsonnareplottedinFigs.57.FromFigs.57 we can see that the length of concrete cracking region fallsmoreandmorequicklyastheprestressingdegreerises.Whentheprestressingdegreeistakenas1,thelengthofconcretecrackingregion is zero, referre
44、d to as fully prestressed composite beams.Similarly,azerooftheprestressingdegreeresultsinthelengthofconcrete cracking region being as 1/C, which depends only ontheloadingpositionmandcorrespondstoconventionalcompositebeams. Fig. 5 indicates how n varies within the usual range ofparameter W/Ae0 when t
45、he other parameters are xed. It iskwhereMk=momentattheinteriorsupportduetoserviceload Pkexcludingprestressingeffect.IntroducingEq.3intoEq.4givesMk=T20e0+3m1mT0L+T0W52AIt is found in experiments that the moment redistribution coef-cientaattheinteriorsupportcanreachabout15%underserviceloadconditions.T
46、herefore,15%isusedtocalculatethemomentattheinteriorsupportunderserviceloadsapproximatelyasJOURNALOFSTRUCTURALENGINEERING©ASCE/NOVEMBER2009/1379Downloaded 19 Feb 2012 to 30. Redistribution subject to ASCE license or copyright. Visit Fig.5.InuenceofparameterW
47、/Ae0onnFig. 8. Comparison among test results, theoretical results and sim-pliedtheoreticalresultsfoundthattheinuenceofparameterW/Ae0onnisveryslightandcanbeignored.In most cases, the neutral axis in the region of positive mo-mentisadjacenttothesteeltopange,andtheprestressingten-dons are adjacent to t
48、he steel bottom ange. According to thesketchshowninFig.1,mLrepresentstheverticaldistancefromthebeamanchortothecenteroftendonstakenproximatelyasthepositionofthesteelbottomange,leadingtothefollowing:gion,andinlowprestressingdegreeregionitvariesfrom0.15to0.20approximatelywhenmvarieswithintheusualrange.
49、Sincetheactuallengthofconcretecrackingregionisslightlyshorter than the theoretical result due to the assumption that thetensile strength of concrete and the increase of tendon force arenegligible, Eq. 11 should be modied to a certain extent. Fur-thermore, except for , the other three parameters all
50、slightlyinuencethen value.Thus,Eq.11canbesimpliedconsider-ingthefollowingfactors:mL+e0hsmLhs112e0 e01.RelationshipformatbetweennandasdenedbyEq.11is maintained by adjusting only the coefcient in the equa-tion.Sincetheheightofthesteelbeamh isabout4to8timesofthesanchoreccentricitye0,theparametermL/e0va
51、riesfrom3to7.WithinthisrangewecanconcludefromFig.6thatthevariationofparametermL/e0willnotsignicantlyinuencethevalueofn.2.3.Thenewequationcanreducetoconventionalnonprestressedcase,i.e.,when=0,n =0.15.The parameter W/Ae0 and mL/e0 can be taken as theaveragevalueswithintheusualrange.Consequently,Eq.11i
52、ssimpliedasFig. 7 shows how the loading position m inuences the nvalue.The n approaches to unity in high prestressing degree re-n=14320113Thecomparisonbetweentestresultsdiscussedlater ,theoreticalresults, and simplied modied theoretical results is shown inFig.8,whichprovesthatEq.13isreasonableandacc
53、urateforthecalculation.PredictionofTendonForceTheincrementoftendonforceduetoexternalloadscanbepre-dicted by developing the equilibrium equation, the deformationcompatibilityequation,andthephysicalequationforthestructuresystem.Theexternalloadsmainlyresultinbeammomentswhosedistribution depends on the
54、loading conditions. The change ofprestressing tendon forces mainly result in axial forces and mo-ments, which can be solved by a simple structural analysis asshowninFig.9.Fig.6.InuenceofparameterL/e0onnTheeffectofprestressingforceincrementTisresolvedintotwo parts in Fig. 9a, namely the equivalent ve
55、rtical forces andhorizontalaxialforcesatbeamends.Thepositionchangeofneu-tralaxisintheregionofhoggingmomentneartheinteriorsupportinuencesthemomentdistributionduetoprestressingforce.Asaresult,acoefcient=e02/e0isdenedheretodescribeit,wheree02representstheverticaldistancefromtheprestressingtendontotheelasticneutralaxisintheregionofhoggingmomentasshowninFig.9awithpositiveforbeingbelowtheneutralaxis.In order to solve the expression of R1 and R2 in Fig. 9a,Fig.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安全注射單選試題及答案
- 基于區(qū)塊鏈技術(shù)的2025年互聯(lián)網(wǎng)+政務(wù)服務(wù)安全與可信度提升與實踐報告001
- 2025年直播電商主播影響力測評與定制化營銷策略研究報告
- 南京網(wǎng)絡(luò)課件師培訓(xùn)
- 顧問式營銷培訓(xùn)課件
- 制圖基本技術(shù)課件
- 腫瘤重點??平ㄔO(shè)成果匯報
- 脂肪瘤護理診斷
- 中國入境旅游課件下載
- 中國兒童文學(xué)史課件
- 股權(quán)質(zhì)押融資與境外投資合作協(xié)議
- 汽油清凈性評價 汽油機進氣閥沉積物模擬試驗法 編制說明
- 沂蒙精神考試試題及答案
- 2024-2025學(xué)年人教版一年級下冊美術(shù)期末考試卷及參考答案
- 2024北京豐臺區(qū)五年級(下)期末語文試題及答案
- 2025年貴州燃氣集團貴安新區(qū)燃氣有限公司招聘筆試參考題庫附帶答案詳解
- 旅行社計調(diào)國家職業(yè)技能標準
- 2025克拉瑪依市輔警考試試卷真題
- 西寧市湟中縣2025年數(shù)學(xué)三下期末考試試題含解析
- 2024北京朝陽區(qū)四年級(下)期末數(shù)學(xué)試題及答案
- 鉆井基礎(chǔ)知識
評論
0/150
提交評論