




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、.蘇教版六年級數(shù)學(xué)用“轉(zhuǎn)化的策略解決問題教材簡析:本節(jié)課是蘇教版六年級下冊解決問題的策略一單元中第一課時,內(nèi)容是第71-72例一及練習(xí)十四的1-4題.本單元教學(xué)轉(zhuǎn)化的策略。轉(zhuǎn)化是解決問題時經(jīng)常采用的方法,能把較復(fù)雜的問題變成較簡單的問題,把新穎的問題變成已經(jīng)解決的問題。轉(zhuǎn)化的手段和詳細方法是多樣而靈敏的,既與實際問題的內(nèi)容和特點有關(guān),也與學(xué)生的認知構(gòu)造有關(guān),掌握轉(zhuǎn)化策略不僅有利于問題的解決,更有益于思維的開展。通過例1的教學(xué)讓學(xué)生聯(lián)絡(luò)實際感悟轉(zhuǎn)化的含義,體會無論在過去還是如今,轉(zhuǎn)化都是解決問題的有效方法。本單元的教學(xué)不以學(xué)生可以解決教材里的各個問題為目的,而在于學(xué)生對轉(zhuǎn)化策略的體驗與主動應(yīng)用。
2、具有初步的轉(zhuǎn)化意識和才能,對以后學(xué)習(xí)與解決問題將會產(chǎn)生非常積極的作用。設(shè)計理念:本節(jié)課突出四性:即現(xiàn)實性、興趣性、考慮性、開放性,以激發(fā)學(xué)生的興趣和考慮。又以培養(yǎng)學(xué)生運用所學(xué)知識解決實際問題的才能,培養(yǎng)學(xué)生的數(shù)學(xué)意識,培養(yǎng)學(xué)生的探究精神和創(chuàng)新才能為核心理念而設(shè)計的一堂課。為今后更高層次的創(chuàng)新而奠定根底。設(shè)計思路:分析本節(jié)課,縱觀全程,既把平移,旋轉(zhuǎn)運用到圖形等積變化的問題中,又蘊涵探究圖形面積公式的轉(zhuǎn)化,還有計算小數(shù)乘法的和分數(shù)除法時的轉(zhuǎn)化,還有數(shù)量關(guān)系之間的轉(zhuǎn)化等。通過回憶和交流,意識到轉(zhuǎn)化是經(jīng)常使用的策略,從而主動應(yīng)用轉(zhuǎn)化的策略解決問題?;诖?,于是采用以下步驟解決。一、創(chuàng)設(shè)情境,感知策略
3、。二、合作交流,探究策略。三、拓展運用,提升策略。教學(xué)內(nèi)容:教科書第7172頁的例1、試一試和練一練、練習(xí)十四的第13題。教學(xué)目的:1.教材讓學(xué)生在直觀的情境中想到轉(zhuǎn)化,并應(yīng)用圖形的平移和旋轉(zhuǎn)知識進展圖形的等積,等周長的變形。2.在解決實際問題過程中體會轉(zhuǎn)化的含義和應(yīng)用的手段,感受轉(zhuǎn)化在解決這個問題時的價值。3.進一步積累解決問題的經(jīng)歷,增強解決問題的轉(zhuǎn)化意識,進步學(xué)好數(shù)學(xué)的信心。教學(xué)重點:感受轉(zhuǎn)化策略的價值,會用轉(zhuǎn)化的策略解決問題。教學(xué)難點:會用轉(zhuǎn)化的策略解決問題。教學(xué)準備:課件;學(xué)生每人一張例1的格子圖。教學(xué)過程:一、創(chuàng)設(shè)情境,感知策略1.談話導(dǎo)入。師:過年的時候,一些地方有個風(fēng)俗,就是把
4、窗花貼在窗上,非常漂亮。今天老師也帶來了一些非常美麗的窗花,請你在欣賞的時候,仔細觀察,它們分別是通過怎樣的變化得到的?課件分別演示蝴蝶平移的過程,第二幅圖順時針和逆時針分別旋轉(zhuǎn)一次,第三幅圖從左往右順時針平移一周的過程提問:1蝴蝶是按怎樣的順序變化而來的?2花環(huán)兩次變化又是怎樣形成的?3最后一幅又是怎樣變化的呢?學(xué)生答復(fù),師依次板書:平移,旋轉(zhuǎn),順時針,逆時針。師:同學(xué)們答復(fù)得都非常好。平移,旋轉(zhuǎn)就在我們身邊。今天我們再來利用身邊的知識來解決問題。板書課題:解決問題二、合作交流,探究策略1.出例如1。提問:這兩種平面圖形,我們以前學(xué)過嗎?沒有你覺得它們象什么呢?生發(fā)揮想象力答復(fù),但要說明的是
5、平面圖形。2.引導(dǎo)交流。提問:你能從圖上準確地數(shù)出它們的面積分別是多少嗎?不能面積會相等嗎?請同學(xué)們4人一小組討論,并可以在剛發(fā)下的作業(yè)紙上涂涂畫畫,驗證你的結(jié)論。小組交流,老師巡視,并指導(dǎo)。3.指導(dǎo)驗證。師:你們組是怎么想的?指名答復(fù)。你在觀察這兩幅圖的時候有什么發(fā)現(xiàn)嗎?學(xué)生說想的過程,并投影出示學(xué)生的作業(yè)紙。生可能答復(fù)上半圓平移下來就是下半圓,他們的面積吻合;花瓶突出來的半圓就是瓶口凹下去的半圓,只要分別把他們旋轉(zhuǎn)180度就可以了老師及時評價并用課件演示剛剛學(xué)生說的過程。提問:這兩幅圖經(jīng)過旋轉(zhuǎn)和平移后都變成了什么圖形?生:長方形。提問:變成長方形后它們的面積相等嗎?為什么?生:相等,長和寬
6、一樣,所以面積一樣。老師再次演示變化過程,提問:在兩幅圖變化的過程中,什么不變?面積都把它變成了誰的面積?生:長方形。小結(jié):因為我們無法一下子看出這兩個平面圖形的大小,但分別把它們轉(zhuǎn)化成一個長方形后,我們就能比較這兩個圖形的大小了。在解決問題的過程中,我們經(jīng)常會用到這樣的策略轉(zhuǎn)化。板書:解決問題的策略轉(zhuǎn)化三、應(yīng)用策略,歸納方法1.談話:剛剛,我們運用轉(zhuǎn)化的策略把不規(guī)那么的圖形變成規(guī)那么圖形來比較大小。在有關(guān)平面圖形的計算中經(jīng)常會用到轉(zhuǎn)化的策略。請同學(xué)們試著來解決以下問題。1練習(xí)十四第2題的左邊兩幅圖。學(xué)生獨立考慮后口答,老師相機演示課件。2練一練右邊的圖形和練習(xí)十四第3題的第一幅圖。提問:你能
7、用比較簡便的方法快速地求出圖形的周長嗎?學(xué)生先獨立考慮,然后和同桌交流。個別學(xué)生介紹自己的方法,老師相機演示課件。小結(jié):在解決這些問題的過程中,我們都用到了怎樣的策略?轉(zhuǎn)化我們要把復(fù)雜的圖形轉(zhuǎn)化未為簡單的圖形,詳細地說又是用到了以前學(xué)習(xí)的哪些知識呢?平移和旋轉(zhuǎn)四、回憶知識,體驗轉(zhuǎn)化1.談話:其實我們以前學(xué)過的知識中,很多都運用了轉(zhuǎn)化的策略,哪位同學(xué)來說說看。指名答復(fù),生可能會說:1.推導(dǎo)三角形公式時,把三角形轉(zhuǎn)化成平行四邊形。2.推導(dǎo)梯形時把梯形轉(zhuǎn)化成平行四邊形。3.推導(dǎo)圓面積時,把圓面積轉(zhuǎn)化成長方形。4.計算小數(shù)乘法時把小數(shù)乘法轉(zhuǎn)化成整數(shù)乘法。5.計算分數(shù)除法時把分數(shù)除法轉(zhuǎn)化成分數(shù)乘法等等。
8、在學(xué)生說的過程中請學(xué)生說說推導(dǎo)的過程,并相應(yīng)演示推導(dǎo)過程。小結(jié):看來,轉(zhuǎn)化確實是一種非常重要的解題策略,在剛剛的交流和演示的過程中,你覺得這種策略有什么優(yōu)點?學(xué)生交流后老師相機板書:化復(fù)雜為簡單,化未知為,化不規(guī)那么為規(guī)那么-五、拓展運用,提升策略1.出示試一試:計算1/2+1/4+1/8+1/16提問:1這些分數(shù)分別表示什么意思?生根據(jù)分數(shù)的意義答復(fù),并強調(diào)單位1一樣。2相鄰的分數(shù)是什么關(guān)系?后一個是前一個的1/2師:我們一起來畫圖表示看看。師根據(jù)題目依次畫圖。師:這題我們又可以怎樣轉(zhuǎn)化呢?學(xué)生看圖解答。指名答復(fù)。1-1/16=15/16假如學(xué)生答復(fù)不出,師提示:求陰影部分,空白部分又是多少
9、呢?提問:假如給這道題目再添上一個加數(shù)1/32,和是多少?再加上1/64呢?假如一直這樣加下去,加到1/1024呢?小結(jié):在解決這個分數(shù)加法的計算題時,我們借助圖形來分析問題,把復(fù)雜的算式變成了簡單的算式。這也是運用了轉(zhuǎn)化的策略數(shù)形結(jié)合。板書2談話:在解決一些稍復(fù)雜的實際問題時,有時我們也可以用轉(zhuǎn)化的策略考慮問題將復(fù)雜問題變得簡單些。請同學(xué)們看這一題:出示練習(xí)十四第1題。1學(xué)生讀題理解單場淘汰制的比賽規(guī)那么并看懂圖的意思。2提問:什么是單場淘汰制?你能結(jié)合示意圖來說說淘汰賽的過程嗎?你會列式計算嗎?學(xué)生列式計算后進展解釋。3提問:假如不畫圖,有更簡便的計算方法嗎?提示:不管第幾輪,每場比賽都要
10、淘汰幾支球隊?到?jīng)Q出冠軍為止,一共要淘汰多少支球隊?那么一共要比賽多少場?這樣看來求比賽了多少場就轉(zhuǎn)化成了什么問題?4假如有64支球隊,產(chǎn)生冠軍一共要比賽多少場?3.出示練習(xí)十四第2題的第3幅圖。學(xué)生先獨立考慮,然后指名學(xué)生交流自己的想法,老師及時評價并演示。4.出示練習(xí)十四第3題的第2幅圖。要求圖形中紅色部分的周長是多少,你有什么好方法?學(xué)生獨立考慮后解答思路:轉(zhuǎn)化成2個圓的周長,集體校對。小結(jié):誰來說說我們是怎樣運用轉(zhuǎn)化的策略來解決這兩個問題的?六、課堂小結(jié)今天我們學(xué)習(xí)的解決問題的策略是什么?轉(zhuǎn)化隨時隨地都在我們身邊,你認為在什么時候采用轉(zhuǎn)化的策略能較好地解決問題?生答復(fù)。七、機動練習(xí)板書
11、設(shè)計:解決問題的策略轉(zhuǎn)化平移 轉(zhuǎn)化成體積相等的長方形旋轉(zhuǎn)順時針,逆時針 不規(guī)那么規(guī)那么S三角形S平行四邊形 復(fù)雜簡單S梯形S平行四邊形 未知S圓 S長方形 不熟悉熟悉小數(shù)乘法整數(shù)乘法分數(shù)除法分數(shù)乘法重視轉(zhuǎn)化數(shù)學(xué)思想的浸透?用轉(zhuǎn)化的策略解決問題?課后反思上周周三下午第二節(jié)課時,我在六2班上了一節(jié)數(shù)學(xué)課?用轉(zhuǎn)化的策略解決問題?。同年級組的高教導(dǎo)在前幾天也上過這一課,我們六年級的三位數(shù)學(xué)老師將這一課作為同題研討,輪流上這一課,進展集體研討。記得去年六月份時曾經(jīng)聽我校陳敏娟老師上過這一課,當時的感覺就是這一課時內(nèi)容不好上,因為它與其他教學(xué)內(nèi)容不同,并不像其他課那樣,通過一節(jié)課的學(xué)習(xí)能讓學(xué)生學(xué)到一個詳細
12、的知識。這一課沒有教給學(xué)生什么新的知識,它所要表達的是一種數(shù)學(xué)思想,即轉(zhuǎn)化,教材借助一些詳細的數(shù)學(xué)問題來向?qū)W生傳達這一數(shù)學(xué)思想。聽課時的我當時只是站在老師的角度在想不好上,如今輪到自己也要執(zhí)教這一課了,就還需要考慮很多問題。在初步構(gòu)思這一課的教學(xué)預(yù)案的那幾天里,經(jīng)常縈繞腦海的一個問題便是什么是轉(zhuǎn)化?。我想假如老師自己都不是非常清楚的話,如何給學(xué)生上這一課呢?轉(zhuǎn)化是解決問題時經(jīng)常采用的方法,能把較復(fù)雜的問題變成較簡單的問題,把新穎的問題變成已經(jīng)解決的問題。轉(zhuǎn)化的手段和詳細方法是多樣而靈敏的,既與實際問題的內(nèi)容和特點有關(guān),也與學(xué)生的認知構(gòu)造有關(guān),掌握轉(zhuǎn)化策略不僅有利于問題的解決,更有益于思維的開展
13、。我想這一課的教學(xué)目的不是以學(xué)生可以解決教材里的各個問題為目的,而在于學(xué)生對轉(zhuǎn)化策略的體驗與主動應(yīng)用。一旦學(xué)生們具有初步的轉(zhuǎn)化意識和才能后,對以后的學(xué)習(xí)與解決問題就會產(chǎn)生非常積極的作用。分析本節(jié)課,縱觀全程,既把平移,旋轉(zhuǎn)運用到圖形等積變化的問題中,又蘊涵探究圖形面積公式的轉(zhuǎn)化,還有計算小數(shù)乘法的和分數(shù)除法時的轉(zhuǎn)化,還有數(shù)量關(guān)系之間的轉(zhuǎn)化等。通過回憶和交流,意識到轉(zhuǎn)化是經(jīng)常使用的策略,從而主動應(yīng)用轉(zhuǎn)化的策略解決問題?;诖?,于是采用以下步驟解決。一、創(chuàng)設(shè)情境,感知策略。二、合作交流,探究策略。三、拓展運用,提升策略。應(yīng)該說整節(jié)課的設(shè)計都是圍繞讓學(xué)生去感知、探究、體驗轉(zhuǎn)化的策略,但上完這一課后,
14、我自我感覺沒有到達預(yù)期的教學(xué)目的。主要問題是學(xué)生對轉(zhuǎn)化策略的體驗不夠,課堂上我沒有很好地設(shè)計一些問題讓學(xué)生考慮:為什么在解決一些數(shù)學(xué)問題時需要用到轉(zhuǎn)化的策略?在運用轉(zhuǎn)化策略的過程中又有哪些詳細的方法?-很多時候都是作為老師的我在唱獨角戲,一個人在那兒說著轉(zhuǎn)化的優(yōu)點,我的每一次的小結(jié)只有化為每個學(xué)生的真切體驗才是有效的教學(xué)。教學(xué)中需要注意的幾點:一、讓學(xué)生在探究中經(jīng)歷轉(zhuǎn)化的過程。轉(zhuǎn)化的策略對于學(xué)生而言并不陌生,在過去解決問題中學(xué)生有過運用轉(zhuǎn)化的策略的經(jīng)歷,只是雖然應(yīng)用并未提升到策略這一高度,學(xué)生對轉(zhuǎn)化策略的應(yīng)用應(yīng)該說是處于無意識狀態(tài)。因此,學(xué)習(xí)這一策略先必須對這一策略的應(yīng)用過程重新又一個明晰的感
15、知。借助例題1的學(xué)習(xí),我們可以讓學(xué)生在探究并運用策略解決問題的過程中,經(jīng)歷運用轉(zhuǎn)化策略的關(guān)鍵步驟。第一步,放手讓學(xué)生在解決問題過程中產(chǎn)生困惑。如例題1中的兩個平面圖形是不規(guī)那么圖形,無法直接計算出它們的面積。第二步,如何運用已學(xué)過的知識來解決這一困惑,即引導(dǎo)學(xué)生去探究解決問題的關(guān)鍵是如何將不規(guī)那么圖形轉(zhuǎn)化為規(guī)那么圖形。第三步,考慮為什么可以運用轉(zhuǎn)化的策略來解決這一問題,即讓學(xué)生體驗當問題較復(fù)雜時可以運用轉(zhuǎn)化的策略使問題變得簡單。在隨后的練習(xí)過程中,老師仍應(yīng)該不時地組織學(xué)生來體驗轉(zhuǎn)化的過程,考慮每次通過轉(zhuǎn)化將什么問題轉(zhuǎn)化成了什么問題,為什么需要運用轉(zhuǎn)化的策略,對轉(zhuǎn)化的策略你又什么新的認識-二、在
16、復(fù)雜變式的應(yīng)用中領(lǐng)會轉(zhuǎn)化的方法在明白并領(lǐng)悟轉(zhuǎn)化的本質(zhì)是化繁為簡,化未知為之后,對于詳細如何運用轉(zhuǎn)化策略而言,關(guān)鍵是針對每一個詳細的問題終究如何尋找到轉(zhuǎn)化的打破口,如何去實現(xiàn)轉(zhuǎn)化。教材安排的練習(xí)中有些問題涉及到較為特殊的轉(zhuǎn)化方法,如例題1后的試一試及練習(xí)十四中的第2題的第3小題等。教學(xué)中需要老師給予學(xué)生較大的探究空間,讓學(xué)生充分考慮,去主動探究如何轉(zhuǎn)化,還需要老師及時組織學(xué)生反思運用轉(zhuǎn)化的策略后解決問題時有什么優(yōu)勢,使學(xué)生充分感受轉(zhuǎn)化策略的價值??偠灾?,轉(zhuǎn)化的策略不同于假設(shè)、枚舉等這些運用于特定問題情境的策略,也不同于畫圖、列表這些一般策略,作為一種廣泛運用的策略,它蘊含了一種重要的數(shù)學(xué)思想。
17、因此,教學(xué)這一策略時,老師不能著眼于學(xué)生會運用這一策略解決問題,應(yīng)努力使學(xué)生在學(xué)習(xí)和運用轉(zhuǎn)化策略解決問題的過程中充分體會數(shù)學(xué)思想的魅力。課前考慮:看了這份教學(xué)設(shè)計,頗有感觸,在對照自己缺乏的同時也略有所思,解決問題的策略是每冊教材上都會安排的內(nèi)容,我只知道這是老教材變?yōu)樾陆滩牡囊粋€特點,可是每一種策略都是要學(xué)生掌握的,而安排的課時數(shù)卻是很有限的,所以老師還得另外安排課時幫助學(xué)生穩(wěn)固相應(yīng)的知識點。正如孫老師所說的,轉(zhuǎn)化的策略確實不單單是一種解決問題的策略,更是蘊涵了一種數(shù)學(xué)思想。假如自己平時上的話,我會按照教材上所編排的內(nèi)容按步就搬的上下來,卻沒有把練習(xí)進展整合,對照這個教學(xué)設(shè)計,感覺收獲很大,
18、思路很明晰,我想在解決問題的時候,要讓學(xué)生掌握轉(zhuǎn)化的關(guān)鍵以及為什么要進展轉(zhuǎn)化,在轉(zhuǎn)化的這一過程中,有可能要用到平移、旋轉(zhuǎn)等,最終的目的都是要解決一些看似不易解決其實很容易解決的問題。課后反思:每次解決問題的策略上下來,都感覺學(xué)生學(xué)得云里霧里的,根本上都是我一個人在唱獨角戲,學(xué)生似懂非懂。由于事先讓學(xué)生預(yù)習(xí)了相關(guān)的內(nèi)容,所以一部分學(xué)生都知道是利用平移和旋轉(zhuǎn)把不規(guī)那么的兩副圖轉(zhuǎn)化成長方形的。要練說,得練聽。聽是說的前提,聽得準確,才有條件正確模擬,才能不斷地掌握高一級程度的語言。我在教學(xué)中,注意聽說結(jié)合,訓(xùn)練幼兒聽的才能,課堂上,我特別重視老師的語言,我對幼兒說話,注意聲音清楚,上下起伏,抑揚有致
19、,富有吸引力,這樣能引起幼兒的注意。當我發(fā)現(xiàn)有的幼兒不專心聽別人發(fā)言時,就隨時表揚那些靜聽的幼兒,或是讓他重復(fù)別人說過的內(nèi)容,抓住教育時機,要求他們專心聽,用心記。平時我還通過各種興趣活動,培養(yǎng)幼兒邊聽邊記,邊聽邊想,邊聽邊說的才能,如聽詞對詞,聽詞句說意思,聽句子辯正誤,聽故事講述故事,聽謎語猜謎底,聽智力故事,動腦筋,出主意,聽兒歌上句,接兒歌下句等,這樣幼兒學(xué)得生動活潑,輕松愉快,既訓(xùn)練了聽的才能,強化了記憶,又開展了思維,為說打下了根底。在讓學(xué)生交流以前學(xué)過的知識中,哪些地方用了轉(zhuǎn)化的策略時?根本上舉手發(fā)言的學(xué)生寥寥無幾,說的都是那么幾個,所以這一任務(wù)也就交給了老師,半引半導(dǎo)的讓學(xué)生知道我們以前學(xué)習(xí)的很多知識都用到了轉(zhuǎn)化的策略。練習(xí)十四中第2題中的第3小題,學(xué)生錯的比較多,很多學(xué)生都寫了9/16,在讓學(xué)生交流各自的方法時,根本上都是把它拼湊出來的,但假如先算空白部分占了這個正方形幾格,學(xué)生相對而言錯誤率就降低了。計算第3題右邊圖形的周長時,老師需要對有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司消防宣傳片策劃方案
- 公司新客戶展示活動方案
- 公司聯(lián)誼團建策劃方案
- 公司消防大比拼活動方案
- 2025年卓越領(lǐng)導(dǎo)力與團隊管理考試試題及答案
- 2025年信息安全技術(shù)考試試卷及答案
- 2025年文案策劃師職業(yè)資格考試試題及答案
- 中班健康飲食教育活動方案
- 客戶服務(wù)心態(tài)培訓(xùn)
- 醫(yī)院收費全流程管理規(guī)范
- GB/T 15814.1-1995煙花爆竹藥劑成分定性測定
- 煤礦安全規(guī)程露天部分參考題庫(含答案)
- 紫銅材質(zhì)證明
- 新產(chǎn)品評審管理辦法
- (參考)菲達公司國內(nèi)電除塵器業(yè)績表
- 游泳池水質(zhì)檢測記錄表
- 大學(xué)生職業(yè)生涯規(guī)劃與就業(yè)指導(dǎo)教案第5講:興趣探索
- 門店電表記錄表
- 七年級勞技 花卉種植 花卉用途 PPT學(xué)習(xí)教案
- 隧道換拱專項施工方案
- 國際金融托馬斯普格爾復(fù)習(xí)資料整理
評論
0/150
提交評論