




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1【學(xué)習(xí)目標】【學(xué)習(xí)目標】理解與橢圓有關(guān)的軌跡問題的理解與橢圓有關(guān)的軌跡問題的, 掌握與橢圓有關(guān)的軌跡問掌握與橢圓有關(guān)的軌跡問題求解策略。題求解策略?!緦W(xué)法指導(dǎo)】【學(xué)法指導(dǎo)】用運動用運動、變化的觀點認識橢圓變化的觀點認識橢圓,感知數(shù)學(xué)與實際生活的感知數(shù)學(xué)與實際生活的聯(lián)系,培養(yǎng)類比、數(shù)形結(jié)合的思想聯(lián)系,培養(yǎng)類比、數(shù)形結(jié)合的思想2復(fù)習(xí)回顧復(fù)習(xí)回顧三三者者之之間間的的關(guān)關(guān)系系是是:;,焦焦距距是是焦焦點點坐坐標標是是程程為為軸軸上上時時,橢橢圓圓的的標標準準方方橢橢圓圓的的焦焦點點在在;焦焦距距是是焦焦點點坐坐標標是是程程為為軸軸上上時時,橢橢圓圓的的標標準準方方橢橢圓圓的的焦焦點點在在橢橢圓圓的的
2、定定義義:cbayx,. 3. 2. 13復(fù)習(xí)回顧復(fù)習(xí)回顧到到另另一一個個焦焦點點的的距距離離為為,則則點點離離為為到到橢橢圓圓一一個個焦焦點點的的距距若若橢橢圓圓上上一一點點焦焦點點坐坐標標是是焦焦距距為為橢橢圓圓的的標標準準方方程程為為則則已已知知橢橢圓圓的的方方程程為為,可可設(shè)設(shè)橢橢圓圓的的方方程程為為未未知知橢橢圓圓的的焦焦點點的的位位置置為為軸軸上上,可可設(shè)設(shè)橢橢圓圓的的方方程程若若焦焦點點在在為為軸軸上上,可可設(shè)設(shè)橢橢圓圓的的方方程程若若焦焦點點在在:已已知知橢橢圓圓的的焦焦點點的的位位置置求求橢橢圓圓的的標標準準方方程程:PPyxyBxA162, 1168. 5)2(:)1(.
3、422 4自主學(xué)習(xí)自主學(xué)習(xí)問問題題二二問問題題探探究究三三:問問題題一一,頁頁頁頁內(nèi)內(nèi)容容,思思考考導(dǎo)導(dǎo)學(xué)學(xué)案案自自學(xué)學(xué)教教材材2436345問題探究問題探究 與橢圓有關(guān)的軌跡問題與橢圓有關(guān)的軌跡問題答案答案若題目條件中某動若題目條件中某動點點P滿足到兩定點距離和為定值滿足到兩定點距離和為定值,此時若利用坐標代入化簡非常麻煩,可利用橢圓的定義得此時若利用坐標代入化簡非常麻煩,可利用橢圓的定義得到點到點 P 的軌跡是橢圓,再求出橢圓的方程,這種解法稱為的軌跡是橢圓,再求出橢圓的方程,這種解法稱為定義法定義法6理論遷移理論遷移軌軌跡跡是是什什么么?的的的的中中點點在在圓圓上上運運動動時時,線線段段
4、為為垂垂足足。當(dāng)當(dāng)點點,軸軸的的垂垂線線段段作作過過點點上上任任取取一一點點在在圓圓例例MPDPDPDxPPyx,4122 xyMDP解解分分析析:利利用用相相關(guān)關(guān)點點法法求求的的坐坐標標所所滿滿足足的的方方程程。方方程程得得到到點點的的坐坐標標滿滿足足圓圓的的關(guān)關(guān)系系式式,并并由由點點坐坐標標之之間間的的與與點點的的中中點點得得到到點點為為線線段段由由設(shè)設(shè)求求解解思思路路:MPPMPDMyxPyxM),(),(007理論遷移理論遷移軌軌跡跡是是什什么么?的的的的中中點點在在圓圓上上運運動動時時,線線段段為為垂垂足足。當(dāng)當(dāng)點點,軸軸的的垂垂線線段段作作過過點點上上任任取取一一點點在在圓圓例例M
5、PDPDPDxPPyx,4122 明明方方程程所所表表示示的的圖圖形形軌軌跡跡:求求出出方方程程還還要要說說即即可可;軌軌跡跡方方程程:只只求求出出方方程程區(qū)區(qū)別別:注注意意軌軌跡跡方方程程和和軌軌跡跡的的. 2. 1的軌跡是一個橢圓的軌跡是一個橢圓點點Myx, 1422 8理論遷移理論遷移的的軌軌跡跡方方程程,求求點點是是,且且它它們們的的斜斜率率之之積積相相交交于于點點,直直線線),(坐坐標標分分別別為為(設(shè)設(shè)點點例例MMBMAMBA94-0 , 50 , 5-,2)5( 191002522 xyx說明:求出曲線的方程之后說明:求出曲線的方程之后要檢驗舍去一些不滿足條件要檢驗舍去一些不滿足
6、條件的點的點9理論遷移理論遷移10理論遷移理論遷移|AB|AC|106.點點A的軌跡是以的軌跡是以B、C為焦點的橢圓,為焦點的橢圓, 且且a5,c3. b216. 由于由于ABC三頂點三頂點A、B、C不共線,不共線,頂點頂點A的縱坐標不能為的縱坐標不能為0.11理論遷移理論遷移12達標檢測達標檢測1. 點點 P(x,y)到定點到定點 A(0,1)的距離與到定直線的距離與到定直線y14 的距離之比為的距離之比為1414,求動點,求動點 P 的軌跡方程的軌跡方程13歸納延伸歸納延伸1 利用橢圓的定義可以判斷點的軌跡是否為橢圓,要注意利用橢圓的定義可以判斷點的軌跡是否為橢圓,要注意變形的等價性變形的等價性2利用橢圓定義可以進行橢圓上點到焦點距離的轉(zhuǎn)化利用橢圓定義可以進行橢圓上點到焦點距離的轉(zhuǎn)化3與橢圓有關(guān)軌跡問題的常用解法:待定系數(shù)法,定義法,與橢圓有關(guān)軌跡問題的常用解法:待定系數(shù)法,定義法,相關(guān)點法相關(guān)點法(代入法代入法).14課
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司物流競賽活動方案
- 2025年文化產(chǎn)業(yè)管理專業(yè)研究生入學(xué)考試試卷及答案
- 2025年健康促進師職業(yè)資格考試試卷及答案
- 2025年家庭教育與青少年發(fā)展考試卷及答案
- 2025年教師資格考試試卷及答案學(xué)習(xí)要點明確
- 與健康同行與心靈相約戶外活動
- 訓(xùn)戰(zhàn)培訓(xùn)總結(jié)
- 護理人員心理支持
- 兩個小時的培訓(xùn)
- 造口病人并發(fā)癥的護理
- 2024年中國中式養(yǎng)生水行業(yè)發(fā)展趨勢洞察報告
- 烘焙專業(yè)職業(yè)生涯規(guī)劃書
- (高清版)JTST 273-2024 水運工程測量定額
- 生物信息學(xué)智慧樹知到期末考試答案章節(jié)答案2024年華東理工大學(xué)
- 智能護理數(shù)字化驅(qū)動醫(yī)護智能管理
- 青少年毒品預(yù)防教育課件
- 【華萊士品牌SWOT探析及營銷策略探究(含問卷)8700字(論文)】
- 鋼管混凝土柱計算
- 應(yīng)急演練評估表模板
- 垃圾滲濾液處理站運維及滲濾液處理投標方案(技術(shù)標)
- 生活垃圾焚燒系統(tǒng)設(shè)計
評論
0/150
提交評論