函數(shù)連續(xù)性和間斷點(diǎn)_第1頁(yè)
函數(shù)連續(xù)性和間斷點(diǎn)_第2頁(yè)
函數(shù)連續(xù)性和間斷點(diǎn)_第3頁(yè)
函數(shù)連續(xù)性和間斷點(diǎn)_第4頁(yè)
函數(shù)連續(xù)性和間斷點(diǎn)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、一、函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性1.函數(shù)的增量函數(shù)的增量.,),(,)()(0000的增量的增量稱為自變量在點(diǎn)稱為自變量在點(diǎn)內(nèi)有定義內(nèi)有定義在在設(shè)函數(shù)設(shè)函數(shù)xxxxxUxxUxf .)(),()(0的的增增量量相相應(yīng)應(yīng)于于稱稱為為函函數(shù)數(shù)xxfxfxfy xy0 xy00 xxx 0)(xfy x 0 xxx 0 x y y )(xfy 2.連續(xù)的定義連續(xù)的定義定義定義 1 1 設(shè)函數(shù)設(shè)函數(shù))(xf在在)(0 xU 內(nèi)有定義內(nèi)有定義, ,如如果當(dāng)自變量的增量果當(dāng)自變量的增量x 趨向于零時(shí)趨向于零時(shí), ,對(duì)應(yīng)的函對(duì)應(yīng)的函數(shù)的增量數(shù)的增量y 也趨向于零也趨向于零, ,即即0lim0 yx 或或0)

2、()(lim000 xfxxfx, ,那末就稱函數(shù)那末就稱函數(shù))(xf在點(diǎn)在點(diǎn)0 x連續(xù)連續(xù), ,0 x稱為稱為)(xf的連續(xù)點(diǎn)的連續(xù)點(diǎn). .,0 xxx 設(shè)設(shè)),()(0 xfxfy ,00 xxx 就是就是).()(00 xfxfy 就就是是定義定義 2 2 設(shè)函數(shù)設(shè)函數(shù))(xf在在)(0 xU 內(nèi)有定義內(nèi)有定義, ,如果如果函數(shù)函數(shù))(xf當(dāng)當(dāng)0 xx 時(shí)的極限存在時(shí)的極限存在, ,且等于它在且等于它在點(diǎn)點(diǎn)0 x處的函數(shù)值處的函數(shù)值)(0 xf, ,即即 )()(lim00 xfxfxx 那末就稱函數(shù)那末就稱函數(shù))(xf在點(diǎn)在點(diǎn)0 x連續(xù)連續(xù). .:定定義義 .)()(, 0, 000

3、xfxfxx恒有恒有時(shí)時(shí)使當(dāng)使當(dāng)例例1 1.0, 0, 0, 0,1sin)(處處連連續(xù)續(xù)在在試試證證函函數(shù)數(shù) xxxxxxf證證, 01sinlim0 xxx, 0)0( f又又由定義由定義2知知.0)(處處連連續(xù)續(xù)在在函函數(shù)數(shù) xxf),0()(lim0fxfx 3.單側(cè)連續(xù)單側(cè)連續(xù);)(),()0(,()(0000處處左左連連續(xù)續(xù)在在點(diǎn)點(diǎn)則則稱稱且且內(nèi)內(nèi)有有定定義義在在若若函函數(shù)數(shù)xxfxfxfxaxf 定理定理.)()(00處處既既左左連連續(xù)續(xù)又又右右連連續(xù)續(xù)在在是是函函數(shù)數(shù)處處連連續(xù)續(xù)在在函函數(shù)數(shù)xxfxxf.)(),()0(,),)(0000處處右右連連續(xù)續(xù)在在點(diǎn)點(diǎn)則則稱稱且且內(nèi)內(nèi)

4、有有定定義義在在若若函函數(shù)數(shù)xxfxfxfbxxf 例例2 2.0, 0, 2, 0, 2)(連續(xù)性連續(xù)性處的處的在在討論函數(shù)討論函數(shù) xxxxxxf解解)2(lim)(lim00 xxfxx2 ),0(f )2(lim)(lim00 xxfxx2 ),0(f 右連續(xù)但不左連續(xù)右連續(xù)但不左連續(xù) ,.0)(處處不不連連續(xù)續(xù)在在點(diǎn)點(diǎn)故故函函數(shù)數(shù) xxf4.連續(xù)函數(shù)與連續(xù)區(qū)間連續(xù)函數(shù)與連續(xù)區(qū)間在區(qū)間上每一點(diǎn)都連續(xù)的函數(shù)在區(qū)間上每一點(diǎn)都連續(xù)的函數(shù),叫做在該區(qū)間上叫做在該區(qū)間上的的連續(xù)函數(shù)連續(xù)函數(shù),或者說(shuō)函數(shù)在該區(qū)間上連續(xù)或者說(shuō)函數(shù)在該區(qū)間上連續(xù).,)(,),(上上連連續(xù)續(xù)在在閉閉區(qū)區(qū)間間函函數(shù)數(shù)則則稱

5、稱處處左左連連續(xù)續(xù)在在右右端端點(diǎn)點(diǎn)處處右右連連續(xù)續(xù)并并且且在在左左端端點(diǎn)點(diǎn)內(nèi)內(nèi)連連續(xù)續(xù)如如果果函函數(shù)數(shù)在在開(kāi)開(kāi)區(qū)區(qū)間間baxfbxaxba 連續(xù)函數(shù)的圖形是一條連續(xù)而不間斷的曲線連續(xù)函數(shù)的圖形是一條連續(xù)而不間斷的曲線.例如例如,.),(內(nèi)是連續(xù)的內(nèi)是連續(xù)的有理函數(shù)在區(qū)間有理函數(shù)在區(qū)間二、函數(shù)的間斷點(diǎn)二、函數(shù)的間斷點(diǎn):)(0條件條件處連續(xù)必須滿足的三個(gè)處連續(xù)必須滿足的三個(gè)在點(diǎn)在點(diǎn)函數(shù)函數(shù)xxf;)()1(0處有定義處有定義在點(diǎn)在點(diǎn)xxf;)(lim)2(0存存在在xfxx).()(lim)3(00 xfxfxx ).()(),()(,00或間斷點(diǎn)或間斷點(diǎn)的不連續(xù)點(diǎn)的不連續(xù)點(diǎn)為為并稱點(diǎn)并稱點(diǎn)或間斷

6、或間斷處不連續(xù)處不連續(xù)在點(diǎn)在點(diǎn)函數(shù)函數(shù)則稱則稱要有一個(gè)不滿足要有一個(gè)不滿足如果上述三個(gè)條件中只如果上述三個(gè)條件中只xfxxxf下面我們根據(jù)連續(xù)的本質(zhì)下面我們根據(jù)連續(xù)的本質(zhì)“極限極限”來(lái)區(qū)來(lái)區(qū)分分 間斷點(diǎn)的類別間斷點(diǎn)的類別1.可去間斷點(diǎn)可去間斷點(diǎn).)()(),()(lim,)(00000的可去間斷點(diǎn)的可去間斷點(diǎn)為函數(shù)為函數(shù)義則稱點(diǎn)義則稱點(diǎn)處無(wú)定處無(wú)定在點(diǎn)在點(diǎn)或或但但處的極限存在處的極限存在在點(diǎn)在點(diǎn)如果如果xfxxxfxfAxfxxfxx 例例5 5.1, 1,11, 10, 1,2)(處的連續(xù)性處的連續(xù)性在在討論函數(shù)討論函數(shù) xxxxxxxfoxy112xy 1xy2 解解, 1)1( f, 2

7、)01( f, 2)01( f2)(lim1 xfx),1(f .0為函數(shù)的可去間斷點(diǎn)為函數(shù)的可去間斷點(diǎn) x注意注意 可去間斷點(diǎn)只要改變或者補(bǔ)充間斷處函可去間斷點(diǎn)只要改變或者補(bǔ)充間斷處函數(shù)的定義數(shù)的定義, 則可使其變?yōu)檫B續(xù)點(diǎn)則可使其變?yōu)檫B續(xù)點(diǎn).如例如例5中中, 2)1( f令令.1, 1,1, 10,2)(處連續(xù)處連續(xù)在在則則 xxxxxxfoxy1122.跳躍間斷點(diǎn)跳躍間斷點(diǎn).)(),0()0(,)(0000的的跳跳躍躍間間斷斷點(diǎn)點(diǎn)為為函函數(shù)數(shù)則則稱稱點(diǎn)點(diǎn)但但存存在在右右極極限限都都處處左左在在點(diǎn)點(diǎn)如如果果xfxxfxfxxf 例例4 4.0, 0,1, 0,)(處處的的連連續(xù)續(xù)性性在在討討

8、論論函函數(shù)數(shù) xxxxxxf解解, 0)00( f, 1)00( f),00()00( ff.0為為函函數(shù)數(shù)的的跳跳躍躍間間斷斷點(diǎn)點(diǎn) xoxy3.第二類間斷點(diǎn)第二類間斷點(diǎn).)(,)(00的的第第二二類類間間斷斷點(diǎn)點(diǎn)為為函函數(shù)數(shù)則則稱稱點(diǎn)點(diǎn)在在右右極極限限至至少少有有一一個(gè)個(gè)不不存存處處的的左左、在在點(diǎn)點(diǎn)如如果果xfxxxf例例6 6.0, 0, 0,1)(處的連續(xù)性處的連續(xù)性在在討論函數(shù)討論函數(shù) xxxxxxf解解oxy, 0)00( f,)00( f.1為函數(shù)的第二類間斷點(diǎn)為函數(shù)的第二類間斷點(diǎn) x.斷斷點(diǎn)點(diǎn)這這種種情情況況稱稱為為無(wú)無(wú)窮窮間間例例7 7.01sin)(處處的的連連續(xù)續(xù)性性在在

9、討討論論函函數(shù)數(shù) xxxf解解xy1sin ,0處沒(méi)有定義處沒(méi)有定義在在 x.1sinlim0不存在不存在且且xx.0為第二類間斷點(diǎn)為第二類間斷點(diǎn) x.斷斷點(diǎn)點(diǎn)這這種種情情況況稱稱為為的的振振蕩蕩間間注意注意 不要以為函數(shù)的間斷點(diǎn)只是個(gè)別的幾個(gè)點(diǎn)不要以為函數(shù)的間斷點(diǎn)只是個(gè)別的幾個(gè)點(diǎn). , 0, 1)(是是無(wú)無(wú)理理數(shù)數(shù)時(shí)時(shí)當(dāng)當(dāng)是是有有理理數(shù)數(shù)時(shí)時(shí)當(dāng)當(dāng)xxxDy狄利克雷函數(shù)狄利克雷函數(shù)在定義域在定義域R內(nèi)每一點(diǎn)處都間斷內(nèi)每一點(diǎn)處都間斷,且都是第二類間且都是第二類間斷點(diǎn)斷點(diǎn). ,)(是無(wú)理數(shù)時(shí)是無(wú)理數(shù)時(shí)當(dāng)當(dāng)是有理數(shù)時(shí)是有理數(shù)時(shí)當(dāng)當(dāng)xxxxxf僅在僅在x=0處連續(xù)處連續(xù), 其余各點(diǎn)處處間斷其余各點(diǎn)處處

10、間斷.例例8 8.0, 0, 0,cos)(,處連續(xù)處連續(xù)在在函數(shù)函數(shù)取何值時(shí)取何值時(shí)當(dāng)當(dāng) xxxaxxxfa解解xxfxxcoslim)(lim00 , 1 )(lim)(lim00 xaxfxx , a ,)0(af ),0()00()00(fff 要使要使,1時(shí)時(shí)故當(dāng)且僅當(dāng)故當(dāng)且僅當(dāng) a.0)(處處連連續(xù)續(xù)在在函函數(shù)數(shù) xxf, 1 a三、小結(jié)三、小結(jié)1.函數(shù)在一點(diǎn)連續(xù)必須滿足的三個(gè)條件函數(shù)在一點(diǎn)連續(xù)必須滿足的三個(gè)條件;3.間斷點(diǎn)的分類與判別間斷點(diǎn)的分類與判別;2.區(qū)間上的連續(xù)函數(shù)區(qū)間上的連續(xù)函數(shù);第一類間斷點(diǎn)第一類間斷點(diǎn):可去型可去型,跳躍型跳躍型.第二類間斷點(diǎn)第二類間斷點(diǎn):無(wú)窮型無(wú)窮

11、型,振蕩型振蕩型.間斷點(diǎn)間斷點(diǎn)(見(jiàn)下圖見(jiàn)下圖)可去型可去型第一類間斷點(diǎn)第一類間斷點(diǎn)oyx跳躍型跳躍型無(wú)窮型無(wú)窮型振蕩型振蕩型第二類間斷點(diǎn)第二類間斷點(diǎn)oyx0 xoyx0 xoyx0 x思考題思考題 若若)(xf在在0 x連連續(xù)續(xù),則則| )(|xf、)(2xf在在0 x是是否否連連續(xù)續(xù)?又又若若| )(|xf、)(2xf在在0 x連連續(xù)續(xù),)(xf在在0 x是是否否連連續(xù)續(xù)?思考題解答思考題解答)(xf在在0 x連連續(xù)續(xù),)()(lim00 xfxfxx )()()()(000 xfxfxfxf 且且)()(lim00 xfxfxx )(lim)(lim)(lim0002xfxfxfxxxxx

12、x)(02xf 故故| )(|xf、)(2xf在在0 x都都連連續(xù)續(xù).但反之不成立但反之不成立.例例 0, 10, 1)(xxxf在在00 x不不連連續(xù)續(xù)但但| )(|xf、)(2xf在在00 x連連續(xù)續(xù)一一、 填填空空題題:1 1、 指指出出23122 xxxy 在在1 x是是第第_ _ _ _ _ _ _ _類類間間斷斷點(diǎn)點(diǎn);在在2 x是是第第_ _ _ _ _ _類類間間斷斷點(diǎn)點(diǎn) . .2 2、 指指出出)1(22 xxxxy在在0 x是是第第_ _ _ _ _ _ _ _ _類類間間斷斷點(diǎn)點(diǎn);在在1 x是是第第_ _ _ _ _ _ _類類間間斷斷點(diǎn)點(diǎn);在在1 x是是第第_ _ _ _

13、 _ _類類間間斷斷點(diǎn)點(diǎn) . .二二、 研研究究函函數(shù)數(shù) 1, 11,)(xxxxf的的連連續(xù)續(xù)性性,并并畫畫出出函函數(shù)數(shù) 的的圖圖形形 . .練練 習(xí)習(xí) 題題三三、 指指出出下下列列函函數(shù)數(shù)在在指指定定范范圍圍內(nèi)內(nèi)的的間間斷斷點(diǎn)點(diǎn),并并說(shuō)說(shuō)明明這這些些間間斷斷點(diǎn)點(diǎn)的的類類型型,如如果果是是可可去去間間斷斷點(diǎn)點(diǎn),則則補(bǔ)補(bǔ)充充或或改改變變函函數(shù)數(shù)的的定定義義使使它它連連續(xù)續(xù) . .1 1、 1,31, 1)(xxxxxf在在Rx 上上 . .2 2、 xxxftan)( , ,在在Rx 上上 . .四四、 討討論論函函數(shù)數(shù) nnnxxxf2211lim)( 的的連連續(xù)續(xù)性性,若若有有間間斷斷點(diǎn)點(diǎn),判判斷斷其其類類型型 . .五五、試試確確定定ba,的的值值, ,使使)1)()( xaxbexfx, (1 1)有有無(wú)無(wú)窮窮間間斷斷點(diǎn)點(diǎn)0 x; (2 2)有有可可去去間間斷斷點(diǎn)點(diǎn)1 x . .一、一、1 1、一類、一類, ,二類;二類; 2 2、一類、一類, ,一類一類, ,二類二類. .二、二、,), 1()1,()(內(nèi)內(nèi)連連續(xù)續(xù)與與在在 xf1 x為跳躍間為跳躍間 斷點(diǎn)斷點(diǎn). .三、三、1 1、1 x為第一類間斷點(diǎn);為第一類間斷點(diǎn);

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論