![高數(shù)7高階導(dǎo)數(shù)ppt課件_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/6/92753fca-71eb-48b0-8744-e93a577ed606/92753fca-71eb-48b0-8744-e93a577ed6061.gif)
![高數(shù)7高階導(dǎo)數(shù)ppt課件_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/6/92753fca-71eb-48b0-8744-e93a577ed606/92753fca-71eb-48b0-8744-e93a577ed6062.gif)
![高數(shù)7高階導(dǎo)數(shù)ppt課件_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/6/92753fca-71eb-48b0-8744-e93a577ed606/92753fca-71eb-48b0-8744-e93a577ed6063.gif)
![高數(shù)7高階導(dǎo)數(shù)ppt課件_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/6/92753fca-71eb-48b0-8744-e93a577ed606/92753fca-71eb-48b0-8744-e93a577ed6064.gif)
![高數(shù)7高階導(dǎo)數(shù)ppt課件_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/6/92753fca-71eb-48b0-8744-e93a577ed606/92753fca-71eb-48b0-8744-e93a577ed6065.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高階導(dǎo)數(shù)高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的定義一、高階導(dǎo)數(shù)的定義問題問題: :變速直線運(yùn)動(dòng)的加速度變速直線運(yùn)動(dòng)的加速度. .),(tfs 設(shè)設(shè))()(tftv 則瞬時(shí)速度為則瞬時(shí)速度為的的變變化化率率對(duì)對(duì)時(shí)時(shí)間間是是速速度度加加速速度度tva. )()()( tftvta定義定義.)() )(,)()(lim) )(,)()(0處處的的二二階階導(dǎo)導(dǎo)數(shù)數(shù)在在點(diǎn)點(diǎn)為為函函數(shù)數(shù)則則稱稱存存在在即即處處可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)的的導(dǎo)導(dǎo)數(shù)數(shù)如如果果函函數(shù)數(shù)xxfxfxxfxxfxfxxfxfx 記作記作.)(,),(2222dxxfddxydyxf或或 二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù)二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù),.,),(33d
2、xydyxf 三階導(dǎo)數(shù)的導(dǎo)數(shù)稱為四階導(dǎo)數(shù)三階導(dǎo)數(shù)的導(dǎo)數(shù)稱為四階導(dǎo)數(shù), .,),(44)4()4(dxydyxf記記作作階階導(dǎo)導(dǎo)數(shù)數(shù)的的函函數(shù)數(shù)階階導(dǎo)導(dǎo)數(shù)數(shù)的的導(dǎo)導(dǎo)數(shù)數(shù)稱稱為為的的函函數(shù)數(shù)一一般般地地,)(1)(,nxfnxf .)(,),()()(nnnnnndxxfddxydyxf或或二階和二階以上的導(dǎo)數(shù)統(tǒng)稱為高階導(dǎo)數(shù)二階和二階以上的導(dǎo)數(shù)統(tǒng)稱為高階導(dǎo)數(shù).)(;)(,稱稱為為一一階階導(dǎo)導(dǎo)數(shù)數(shù)稱稱為為零零階階導(dǎo)導(dǎo)數(shù)數(shù)相相應(yīng)應(yīng)地地xfxf 二、二、 高階導(dǎo)數(shù)求法舉例高階導(dǎo)數(shù)求法舉例1.1.直接法直接法: :由高階導(dǎo)數(shù)的定義逐步求高階導(dǎo)數(shù)由高階導(dǎo)數(shù)的定義逐步求高階導(dǎo)數(shù).例例1 1).0(),0(,a
3、rctanffxy 求求設(shè)設(shè)解解211xy )11(2 xy22)1(2xx )1(2(22 xxy322)1()13(2xx 022)1(2)0( xxxf; 0 0322)1()13(2)0( xxxf. 2 例例2 2.),()(nyRxy求求設(shè)設(shè) 解解1 xy)(1 xy2)1( x)1(2 xy3)2)(1( x)1()1()1()( nxnynn則則為自然數(shù)為自然數(shù)若若,n )()()(nnnxy , !n ) !()1( nyn. 0 例例3)(1110nnnnnyaxaxaxay求求 解解1221102)1( nnnnaxaxanxnay231202)2)(1()1( nnna
4、xannxannyknknknkakxaknnnxaknnny !)()2)(1()1()1(110)(0)(!anyn 注意注意: : 求求n n階導(dǎo)數(shù)時(shí)階導(dǎo)數(shù)時(shí), ,求出求出1-31-3或或4 4階后階后, ,不要急于合不要急于合并并, ,分析結(jié)果的規(guī)律性分析結(jié)果的規(guī)律性, ,寫出寫出n n階導(dǎo)數(shù)階導(dǎo)數(shù).(.(數(shù)學(xué)歸納數(shù)學(xué)歸納法證明法證明)逐階求導(dǎo),尋求規(guī)律,寫出通式逐階求導(dǎo),尋求規(guī)律,寫出通式例例4 4.),1ln()(nyxy求求設(shè)設(shè) 解解xy 112)1(1xy 3)1(! 2xy 4)4()1(! 3xy )1! 0, 1()1()!1()1(1)( nxnynnn例例5 5.,s
5、in)(nyxy求求設(shè)設(shè) 解解xycos )2sin( x)2cos( xy)22sin( x)22sin( x)22cos( xy)23sin( x)2sin()( nxyn同理可得同理可得)2cos()(cos)( nxxn例例6 6.),(sin)(naxybabxey求求為為常常數(shù)數(shù)設(shè)設(shè) 解解bxbebxaeyaxaxcossin )cossin(bxbbxaeax )arctan()sin(22abbxbaeax )cos()sin(22 bxbebxaebayaxax)2sin(2222 bxbaebaax)sin()(222)( nbxebayaxnn)arctan(ab 2.
6、高階導(dǎo)數(shù)的運(yùn)算法則高階導(dǎo)數(shù)的運(yùn)算法則:則則階階導(dǎo)導(dǎo)數(shù)數(shù)具具有有和和設(shè)設(shè)函函數(shù)數(shù),nvu)()()()()1(nnnvuvu )()()()2(nnCuCu )()()()(nnnvuvu )()(0)()()()2()1()()(!)1()1(! 2)1()()3(kknnkknnkknnnnnvuCuvvukknnnvunnvnuvuvu 萊布尼茲公式萊布尼茲公式例例7 7.,)20(22yexyx求求設(shè)設(shè) 解解則由萊布尼茲公式知?jiǎng)t由萊布尼茲公式知設(shè)設(shè),22xveux 0)()(! 2)120(20)()(20)(2)18(22)19(22)20(2)20( xexexeyxxx22! 21
7、920222022182192220 xxxexexe)9520(22220 xxex例例8)0(arctan)()(nfxxf,求,求設(shè)設(shè) 解解得得由由211)(xxf 1)()1(2 xfx由由Lebniz公式,兩邊求公式,兩邊求 n 階導(dǎo)數(shù),有階導(dǎo)數(shù),有0)()1()(2 nxfx0)1()(! 2)1()1()()1()(2)2(2)1(2)( xxfnnxxfnxxfnnn0)()1()(2)()1()1()()1(2 xfnnxnxfxfxnnn得得令令0 x0)0()1()0()1()1( nnfnnf注意到注意到1)0(, 0)0( ff0)0()2( nf)!2()1()0(
8、)12(nfnn 注注這一解法的特點(diǎn):找到了這一解法的特點(diǎn):找到了xyarctan 的連續(xù)三階導(dǎo)數(shù)之間的關(guān)系,利用的連續(xù)三階導(dǎo)數(shù)之間的關(guān)系,利用0 x得到兩相隔導(dǎo)數(shù)之間的關(guān)系,解決問題得到兩相隔導(dǎo)數(shù)之間的關(guān)系,解決問題 3.3.間接法間接法: : 利用已知的高階導(dǎo)數(shù)公式利用已知的高階導(dǎo)數(shù)公式, 通過四則通過四則運(yùn)算運(yùn)算, 變量代換等方法變量代換等方法, 求出求出n階導(dǎo)數(shù)階導(dǎo)數(shù).常用高階導(dǎo)數(shù)公式常用高階導(dǎo)數(shù)公式)0(ln)()1()( aaaanxnxxnxee )()()2sin()(sin)2()( nkxkkxnn)2cos()(cos)3()( nkxkkxnnnnxnx )1()1()
9、()4()(nnnxnx)!1()1()(ln)5(1)( 1)(!)1()1( nnnxnx例例9 9.,11)5(2yxy求求設(shè)設(shè) 解解)1111(21112 xxxy)1(! 5)1(! 52166)5( xxy)1(1)1(16066 xx例例1010.,cossin)(66nyxxy求求設(shè)設(shè) 解解3232)(cos)(sinxxy )coscossin)(sincos(sin422422xxxxxx xxxx22222cossin3)cos(sin x2sin4312 24cos1431x x4cos8385 ).24cos(483)( nxynn例例11試從試從ydydx 1導(dǎo)出導(dǎo)
10、出322)(yydyxd 5233)()(3yyyydyxd 解解)()(yxxyy yxy 得得由由ydydx 1)1()(22ydyddydxdyddyxd dydxydxd )1(yyy 1)(123)(yy )(2233dyxddyddyxd )(3yydyd dydxyydxd )(3yyyyyyy 1)()(3)(62352)()(3yyyy 注注關(guān)于抽象函數(shù)求導(dǎo)數(shù),必須注意并分清是對(duì)哪關(guān)于抽象函數(shù)求導(dǎo)數(shù),必須注意并分清是對(duì)哪一個(gè)變量來(lái)求導(dǎo)數(shù),尤其是求高階導(dǎo)數(shù)。一個(gè)變量來(lái)求導(dǎo)數(shù),尤其是求高階導(dǎo)數(shù)。yydxyddxdy ,22都是對(duì)都是對(duì) x 求導(dǎo)求導(dǎo))( )(22xfxf 的的導(dǎo)導(dǎo)數(shù)數(shù)對(duì)對(duì)復(fù)復(fù)合合函函數(shù)數(shù)xxfyxf)( )(22 代代回回求求導(dǎo)導(dǎo)數(shù)數(shù)再再用用對(duì)對(duì)即即是是22)()()(2xuuufyufxfxu 三、小結(jié)三、小結(jié)高階導(dǎo)數(shù)的定義及物理意義高階導(dǎo)數(shù)的定義及物理意義;高階導(dǎo)數(shù)的運(yùn)算法則高階導(dǎo)數(shù)的運(yùn)算法則(萊布尼茲公式萊布尼茲公式);n階導(dǎo)數(shù)的求法階導(dǎo)數(shù)的求法;1.直接法直接法;2.間接法間接法.思考題思考題設(shè)設(shè) 連續(xù),且連
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度廣告活動(dòng)策劃與執(zhí)行代理合同范本
- 2025年度中小企業(yè)信用貸款合同范本及證明書格式
- 2025年度海運(yùn)集裝箱清潔與消毒服務(wù)合同
- 2025年度糧食行業(yè)市場(chǎng)拓展與品牌推廣合同
- 2025年度家暴離婚財(cái)產(chǎn)分割專項(xiàng)法律服務(wù)合同
- 金華浙江金華蘭溪市人民政府辦公室招聘勞務(wù)派遣工作人員筆試歷年參考題庫(kù)附帶答案詳解
- 貴州2025年貴州開放大學(xué)(貴州職業(yè)技術(shù)學(xué)院)招聘41人筆試歷年參考題庫(kù)附帶答案詳解
- 衢州浙江衢州江山市峽口中心幼兒園招聘幼兒園專任教師筆試歷年參考題庫(kù)附帶答案詳解
- 珠海廣東珠海市澳深度合作區(qū)頌琴小學(xué)招聘臨聘專任教師7人筆試歷年參考題庫(kù)附帶答案詳解
- 湖南2025年湖南農(nóng)業(yè)大學(xué)-岳麓山實(shí)驗(yàn)室博士后招聘筆試歷年參考題庫(kù)附帶答案詳解
- 軟件系統(tǒng)項(xiàng)目實(shí)施方案(共3篇)
- 2024年全國(guó)現(xiàn)場(chǎng)流行病學(xué)調(diào)查職業(yè)技能競(jìng)賽考試題庫(kù)-上部分(600題)
- 2025年中國(guó)鐵路設(shè)計(jì)集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- (一模)晉城市2025年高三年第一次模擬考試 物理試卷(含AB卷答案解析)
- 實(shí)驗(yàn)室5S管理培訓(xùn)
- 醫(yī)院工程施工重難點(diǎn)分析及針對(duì)性措施
- 2025年春節(jié)安全專題培訓(xùn)(附2024年10起重特大事故案例)
- GB/T 44958-2024化工設(shè)備安全管理規(guī)范
- 《化妝品包裝材料相容性試驗(yàn)評(píng)估指南》
- 6張精美甘特圖圖表可編輯課件模板
- 2025年軋鋼原料工技能考試題庫(kù)
評(píng)論
0/150
提交評(píng)論