版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、上海市 2012-2013 學(xué)年高二數(shù)學(xué)上學(xué)期期末考試試題滬教版(考試時(shí)間: 120 分鐘 滿分: 150 分)、填空題(本大題滿分56 分,共 14 小題,每小題滿分 4 分)2221計(jì)算矩陣的乘積132. 計(jì)算行列式25103. 直線 x (m 2)y 40 的傾斜角為 ,則 m 的值是44 lim ( 12 4 7 nn3n 22 )=n5. 已知直線5x12y a0 與圓 x2 2x y2 0 相切,則 a的值為6. 以拋物線2y24x 的焦點(diǎn)為圓心,且過坐標(biāo)原點(diǎn)的圓的方程為7. 已知方程2x3k2y1 表示橢圓,則2kk 的取值范圍為8若向量 AB (3, 1),n (2,1) ,且
2、 nAC 7 ,那么 n BC 的值為9. 若 直 線 l 經(jīng) 過 原 點(diǎn) , 且 與 直 線 y3x 2 的 夾 角 為0300 ,則直線 l 方程為10 若 三 條 直 線 x y1 0 , 2x y 80和ax 3y 5 0只有兩個(gè)不同的交點(diǎn),則實(shí)數(shù) a 的值為11. 執(zhí)行右邊的程序框圖,則輸出的結(jié)果是2 x 12.若點(diǎn)O和點(diǎn) F( 2,0)分別為雙曲線 2 a2點(diǎn),點(diǎn) P 為雙曲線右支上的任意一點(diǎn),則OP FP 的取值范圍為1(a 0) 的中心和左焦21113. 已知 A,0 ,B 是圓 F: x4(F為圓心 )上一動(dòng)點(diǎn),線段 AB的垂直平分線交 BF于 P,則動(dòng)點(diǎn)P 的軌跡方程為14
3、.雙曲線 x2 y2 2的左、右焦點(diǎn)分別為 F1,F(xiàn)2,點(diǎn) Pn(xn,yn)(nN ) 在其右支上,42222222A) y2x2 1(B) x2 y2 1(C)yx2 1(D)x3123 12282二、選擇題(本大題滿分 20分,共 4小題,每小題滿分 5 分)215. 與雙曲線 y x2 1有共同的漸近線,且過點(diǎn)( 2, 2)的雙曲線標(biāo)準(zhǔn)方程為()2 y2 1 816. 在等比數(shù)列 an 中, a11,公比 q 1. 若 am a1a2a3a4a5,則 m=(且滿足 Pn 1F2PnF1 , P1F2F1 F2 ,則橫坐標(biāo) x2013的值是 A)9( B)10(C)11D)12717.
4、已知拋物線 y2 2px(p則fk12k 1 成立,下列命題成立的是 (A)若f9 成立,則對(duì)于任意 k1,均有 f kk2成立B)若f16 成立,則對(duì)于任意的4 ,均有 f2k2 成立C)若f49成立,則對(duì)于任意的7 ,均有 f2k2 成立D)若f25成立,則對(duì)于任意的4 ,均有 fk2 成立三、解答題74 分)19. (12 分)過橢圓 x2 2y2 2的右焦點(diǎn)F1 的直線 L 與圓22xyr2r 0 相切,并0)的焦點(diǎn)為 F ,點(diǎn) P1(x1,y1),P2(x2,y2), P3 ( x3, y3 )在拋物線上,且 2x2 x1 x3 ,則有 ()2 2 2(A) FP1 FP2 FP3(
5、B) FP1FP2FP3(C)2 FP2 FP1 FP3(D) FP2 2 FP1·FP318.已知 f x 是定義域?yàn)檎麛?shù)集的函數(shù),對(duì)于定義域內(nèi)任意的 k ,若 f k k2成立,且直線 L 過拋物線 x2 8ry 的焦點(diǎn) F2 。(1)求 F1、 F2 的坐標(biāo);(2)求直線 L 的方程。20. ( 12 分)已知一個(gè)圓與 y 軸相切,在直線 y x 上截得弦長為 2 7 ,且圓心在直線x 3y 0 上,求此圓的方程21. (14 分)已知 F (2,0) ,直線 l:x2 , P為平面上的動(dòng)點(diǎn),過點(diǎn) P作l的垂線,垂足為點(diǎn) Q,且 QP QF FP FQ(1)求動(dòng)點(diǎn) P 的軌跡
6、 C的方程;(2)過點(diǎn) F 的直線交軌跡 C于 A,B兩點(diǎn),點(diǎn) O是直角坐標(biāo)系的原點(diǎn), 求 OAB面積的最 小值,并求出當(dāng) OAB的面積取到最小值時(shí)直線 l 的方程。22. (18 分)已知兩定點(diǎn) F1uuuur2,0 ,F2 2,0 ,滿足條件 PF2uuurPF12的點(diǎn) P 的軌跡是曲線 E,直線 y kx 1與曲線 E交于 A,B 兩點(diǎn),如果 AB 6 3,且曲線 E上存在點(diǎn) uuur uuur uuurC ,使 OA OB mOC.(1) 求曲線 E 的方程;(2) 求實(shí)數(shù) k 的值;(3)求實(shí)數(shù) m 的值。23. (18 分)已知數(shù)列 an 、 bn上。(1) 求數(shù)列 an 的通項(xiàng)公
7、式;(2)若數(shù)列 bn 滿足 a1b1 a2b2a1 a2n 1 2cn ,點(diǎn)M (1,2),An(2,an),Bn(, )在一直線nnanbnan 3 ,求數(shù)列 bn 的通項(xiàng)公式;an3)若數(shù)列 cn的前 n 項(xiàng)和為 Sn ,且滿足a1S1a2S2anSna nan (a 為常數(shù))a1 a2an問點(diǎn) P1 (1,c1 ) , P1 ( 2, c2 ) , ,Pn(n,cn)是否在同一直線上,請(qǐng)說明理由。金山中學(xué) 2012 學(xué)年度第一學(xué)期高二年級(jí)數(shù)學(xué)學(xué)科期末考試參考答案0 的傾斜角為 ,則 m 的值是31473n 2) =4 lnim( 2 222nnnnn5. 已知直線 5x12ya0 與圓
8、x2 2x y26. 以 拋 物 線y24x的焦點(diǎn)為圓心,2 x2 y2x03. 直線 x (m 2)y 44320 相切,則 a 的值為 8; -18且過坐標(biāo)原點(diǎn)的圓的方程為227.已知方程 x y1表示橢圓,則 k 的取值范圍為3 k 2 k11( 3, 21)U( 21,2)8若向量 AB (3, 1),n (2,1) ,且 n9. 若 直 線 l 經(jīng) 過 原 點(diǎn) , 且 與 直 線 yAC 7 ,那么 n BC 的值為 23x 2 的夾角為 300,則直線 l 方程為x y 3 x x 0; y x 310若三條直線 x y 1 0,2x y 8 0和 ax 3y 5 0只 有兩個(gè)不同
9、的交點(diǎn),則實(shí)數(shù) a 的值為 -3 ;611. 執(zhí)行右邊的程序框圖,則輸出的結(jié)果是 10212.若點(diǎn) O和點(diǎn) F( 2,0) 分別為雙曲線 x2 y2 1(a 0) 的中心和左a2焦點(diǎn),點(diǎn) P 為雙曲線右支上的任意一點(diǎn),則 3 2 3, OP FP 的取值范圍為113.已知 A ,0 ,B是圓 F:2點(diǎn),線段2 xAB 的垂直平分線交2y2 13212x y2 4(F為圓心 )上一動(dòng)2BF 于 P,則動(dòng)點(diǎn) P 的軌跡方程為一、填空題(本大題滿分56 分,x1計(jì)算矩陣的乘積y0mn12132. 計(jì)算行列式625=010共 14 小題,每小題滿分 4 分)1 yx 0n m28 4F1,F(xiàn)2,點(diǎn) P
10、n(xn, yn)(nN ) 在其右支上,14. 雙曲線 x2 y2 2的左、右焦點(diǎn)分別為且滿足 Pn 1F2 PnF1 ,P1F2 F1 F2 ,則橫坐標(biāo) x2013的值是 _4026、選擇題(本大題滿分 20分,共 4小題,每小題滿分 5 分)2115. 與雙曲線 y422(A) y2 x23 1216. 在等比數(shù)列(A)917. 已知拋物線物線上,且 2x2中,1有共同的漸近線,且過點(diǎn)( 2, 2)B)的雙曲線標(biāo)準(zhǔn)方程為(A) FP1(C) 2 FP218. 已知 f2 y 12 公比 (C) 0) 的焦點(diǎn)為2 x2 1 82y2 182x31,an( B) 102px(px1 x3 ,
11、則有( C )FP2FP3a1FP3q11B)2(C)y21. 若 am a1a2a3a4a5,則 m=( (D) 12F ,點(diǎn) P1(x1,y1),P2(x2,y2) ,D) FP2FP1FP2 FP32 FP1· FP3FP1是定義域?yàn)檎麛?shù)集的函數(shù),對(duì)于定義域內(nèi)任意的k,則fk12k 1 成立,下列命題成立的是 (D )(A)若f39 成立,則對(duì)于任意 k1,均有fkk2成立(B)若f416成立,則對(duì)于任意的k4,均有 fkk2成立(C)若f749成立,則對(duì)于任意的k7,均有 fkk2成立(D)若f425成立,則對(duì)于任意的k4,均有 fkk2成立三、解答題(74 分)19. (
12、12 分)過橢圓 x22y2 2 的右焦點(diǎn)F1 的直線 L 與圓x22 y8ry 的焦點(diǎn) F2 。r2且直線 L 過拋物線 x2 (1) 求 F1、 F2 的坐標(biāo); (2) 求直線 L 的方程。2 解: (1) 由橢圓方程 x2 由拋物線方程 x222y2 2得F1的坐標(biāo)( 1,0)8ry 得 F2 的坐標(biāo)( 0,2 r ) (2) 設(shè)直線 L 的方程為: x y 12r所以 r因此直線20.x解:3 2 L 的方程為: 3x y 3 0 分)已知一個(gè)圓與 y 軸相切,在直線 y x 上截得弦長為 0 上,求此圓的方程 .2 2 2(x a)2 (y b)2 r 22D)x2 C )P3 (
13、x3,y3) 在拋若fr02k2成立,相切,并123y 設(shè)圓的方程為:則2 7 , 且圓心在直線a 3b 02分9因此圓的方程為:21. (14 分)已知3)2 (y 1)2 9 ,2,(xF (2,0) ,直線 l : x22(x 3)2 (y 1)2 9-P 為平面上的動(dòng)點(diǎn),過點(diǎn)-2 分P作l 的垂線,垂足為點(diǎn) Q,且 QP QF FP FQ(1)求動(dòng)點(diǎn) P 的軌跡 C的方程;(2)過點(diǎn) F 的直線交軌跡 C 于 A,B 兩點(diǎn), 小值,并求出當(dāng)解:(1)設(shè)點(diǎn) P(x,y) ,則Q( 2,y),由 QP QF FP點(diǎn) O 是直角坐標(biāo)系的原點(diǎn), OAB的面積取到最小值時(shí)直線 l 的方程。求 O
14、AB 面積的最(x 2,0) (4, y) (x 2, y) ( 4,y)2C : y 8x 6( 9 分)FQ 得:化2)10當(dāng)直線 l 與 x軸垂直時(shí),A(1,2) 、 B(1,2) , S OAB14ab2r27 -4分a3a3所以b1或b1r3r3分141) , A(x1, y1)、B(x2,y2),4k 020 當(dāng)直線 l 與 x 軸不垂直時(shí), 可設(shè)直線 l 的方程為 y k(x 將拋物線方程與直線方程聯(lián)立,消去 x 整理得: ky2 4yk0( 4)24k (4k)04y1 y2ky1 y241S OAB2|OF | |y1y2 |12 (y1 y2)2 4y1y2 =12 16
15、k162 2 ,分5所以 OAB 面積的最小值為 2,此時(shí)直線 l 的方程為 x =1。 1分22. ( 18 分)已知兩定點(diǎn) F1uuuuruuur,滿足條件PF2PF12,0 ,F2 2,02的點(diǎn) P 的軌跡是曲線 E ,直線 y uuur uuur 點(diǎn) C ,使 OA OBkx 1與曲線 E 交于 A, B兩點(diǎn), uuurmOC。如果 AB 6 3 ,且曲線 E上存在解:(1)由雙曲線的定義可知,曲線E 是以 F12,0點(diǎn)的雙曲線的左支,且 c 2,a 1,易知 b1故 曲 線 E的方(1) 求曲線 E 的方程;(2) 求實(shí)數(shù) k 的值;(3) 求實(shí)數(shù) m 的值。22x y 1 x 02
16、)設(shè) A x1,y1 ,B x2, y2 ,由題意建立方程組kx2y2消去 y ,得 1 k2 x2 2kx 又已知直線與雙曲線左支交于兩點(diǎn) k220A,B ,有122k01 k2x1 x2x1x22k1 2kk2 022 01 k2解得14 分又 AB依題意得1 k2x1 x21 k2x12x24x1x21 k22k1 k22k2221 k 2 2 k2221 k 22 1 k122 k 22k2 263整理后得28k4255k2 255 或 k273)設(shè) C xc,yc ,由已知 OA k25但4uuur2 uuur OBk1uuurmOC,k5 42 mxc ,mycx1 x2 y1 y
17、2x1,y1x2,y2mxc,myc2kk 2 1點(diǎn) C 4 5 m又 x1 x2 2曲線將點(diǎn) C 的坐標(biāo)代入曲線y1 y2 k x1E 上,所以 mE 的方程,得 802m2x2642m23. (18 分)已知數(shù)列 an 、 bn 、 cn ,點(diǎn)M (1,2),上。(2) 求數(shù)列 an 的通項(xiàng)公式;2)若數(shù)列 bn 滿足a1b1 a2b2anbna1 a23)若數(shù)列 cn 的前 n項(xiàng)和為 Sn ,且滿足ana1S12k2k 2 1An(2,an) ,an 3 ,求數(shù)列 bna2S2anSnan分n 1 2Bn(n 1, 2)在一直線nn的通項(xiàng)公式;a1 a2問點(diǎn) P1(1,c1),P1(2,c2) , ,Pn(n,cn)是否在同一直線上,請(qǐng)說明理由。 解:( 1)由已知得: kMA an 2 , 2MAn
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《證券基本知識(shí)培訓(xùn)》課件
- 七年級(jí)英語Peopleandwork課件
- 2025年寫人要抓住特點(diǎn)
- 大學(xué)計(jì)算機(jī)專業(yè)介紹
- 《試驗(yàn)室管理》課件
- 單位管理制度集粹選集【職員管理篇】
- 單位管理制度范例選集人員管理十篇
- 單位管理制度呈現(xiàn)合集人員管理十篇
- 單位管理制度呈現(xiàn)大合集人事管理篇
- (高頻選擇題50題)第1單元 中華人民共和國的成立和鞏固(解析版)
- 2025屆江西省景德鎮(zhèn)市八年級(jí)數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 小學(xué)美術(shù)桂美版三年級(jí)上冊(cè)《第8課畫身邊的小物件》省級(jí)名師授課教案課教案獲獎(jiǎng)教案公開課教案A001
- 光電子技術(shù)(第二版)全套課件電子教案板
- 統(tǒng)編版(2024新版)七年級(jí)上冊(cè)歷史期末復(fù)習(xí)全冊(cè)知識(shí)點(diǎn)考點(diǎn)提綱
- 高中英語單詞默寫卡片新人教版必修二Unit1
- 無菌技術(shù)操作評(píng)分標(biāo)準(zhǔn)
- 《社群運(yùn)營》全套教學(xué)課件
- 兒童版畫(版畫基礎(chǔ))
- 中央2024年國家國防科工局重大專項(xiàng)工程中心面向應(yīng)屆生招聘筆試歷年典型考題及考點(diǎn)附答案解析
- 車輛提檔委托書樣本
- 充值消費(fèi)返利合同范本
評(píng)論
0/150
提交評(píng)論