下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、一、簡(jiǎn)答題 1、分別簡(jiǎn)單敘說算術(shù)與代數(shù)的解題方法基本思想,并且比較 它們的區(qū)別。 答:算術(shù)解題方法的基本思想:首先要圍繞所求的數(shù)量, 收集和整理各種已知的數(shù)據(jù),并依據(jù)問題的條件列出關(guān)于這些具 體數(shù)據(jù)的算式,然后通過四則運(yùn)算求得算式的結(jié)果。代數(shù)解題方法的基本思想是:首先依據(jù)問題的條件組成內(nèi)含 已知數(shù)和未知數(shù)的代數(shù)式,并按等量關(guān)系列出方程,然后通過對(duì) 方程進(jìn)行恒等變換求出未知數(shù)的值。 它們的區(qū)別在于算術(shù)解題參與的量必須是已知的量,而代數(shù) 解題允許未知的量參與運(yùn)算;算術(shù)方法的關(guān)鍵之處是列算式,而 代數(shù)方法的關(guān)鍵之處是列方程。2、比較決定性現(xiàn)象和隨機(jī)性現(xiàn)象的特點(diǎn),簡(jiǎn)單敘說確定數(shù) 學(xué)的局限。 答:人們常
2、常遇到兩類截然不同的現(xiàn)象,一類是決定性 現(xiàn)象,另一類是隨機(jī)現(xiàn)象。決定性現(xiàn)象的特點(diǎn)是:在一定的條 件下,其結(jié)果可以唯一確定。因此決定性現(xiàn)象的條件和結(jié)果之 間存在著必然的聯(lián)系,所以事先可以預(yù)知結(jié)果如何。 隨機(jī)現(xiàn)象的特點(diǎn)是:在一定的條件下,可能發(fā)生某種結(jié)果, 也可能不發(fā)生某種結(jié)果。對(duì)于這類現(xiàn)象,由于條件和結(jié)果之間不 存在必然性聯(lián)系。 在數(shù)學(xué)學(xué)科中,人們常常把研究決定性現(xiàn)象數(shù)量規(guī)律的那些 數(shù)學(xué)分支稱為確定數(shù)學(xué)。用這些的分支來定量地描述某些決定性 現(xiàn)象的運(yùn)動(dòng)和變化過程,從而確定結(jié)果。但是由于隨機(jī)現(xiàn)象條件 和結(jié)果之間不存在必然性聯(lián)系,因此不能用確定數(shù)學(xué)來加以定量 描述。同時(shí)確定數(shù)學(xué)也無法定量地揭示大量同類
3、隨機(jī)現(xiàn)象中所蘊(yùn) 涵的規(guī)律性。這些是確定數(shù)學(xué)的局限所在。3敘述抽象的含義及其過程。答:抽象是指在認(rèn)識(shí)事物的過程中,舍棄那些個(gè)別的、偶然的非本質(zhì)屬性,抽取普遍的、必然的本質(zhì)屬性,形成科學(xué)概念,從而把握事物的本質(zhì)和規(guī)律的思維過程。人們?cè)谒季S中對(duì)對(duì)象的抽象是從對(duì)對(duì)象的比較和區(qū)分開始的。所謂比較,就是在思維中確定對(duì)象之間的相同點(diǎn)和不同點(diǎn);而所謂區(qū)分,則是把比較得到的相同點(diǎn)和不同點(diǎn)在思維中固定下來,利用它們把對(duì)象分為不同的類。然后再進(jìn)行舍棄與收括,舍棄是指在思維中不考慮對(duì)象的某些性質(zhì),收括則是指把對(duì)象的我們所需要的性質(zhì)固定下來,并用詞表達(dá)出來。這就形成了抽象的概念,同時(shí)也就形成了表示這個(gè)概念的詞,于是完成
4、了一個(gè)抽象過程。4、括的含義及其過程。答:概括是指在認(rèn)識(shí)事物屬性的過程中,把所研究各部分事物得到的一般的、本質(zhì)的屬性聯(lián)系起來,整理推廣到同類的全體事物,從而形成這類事物的普遍概念的思維過程。概括通常可分為經(jīng)驗(yàn)概括和理論概括兩種。經(jīng)驗(yàn)概括是從事實(shí)出發(fā),以對(duì)個(gè)別事物所做的觀察陳述為基礎(chǔ),上升為普遍的認(rèn)識(shí)由對(duì)個(gè)體特性的認(rèn)識(shí)上升為對(duì)個(gè)體所屬的種的特性的認(rèn)識(shí)。理論概括則是指在經(jīng)驗(yàn)概括的基礎(chǔ)上,由對(duì)種的特性的認(rèn)識(shí)上升為對(duì)種所屬的屬的特性的認(rèn)識(shí),從而達(dá)到對(duì)客觀世界的規(guī)律的認(rèn)識(shí)。在數(shù)學(xué)中經(jīng)常使用的是理論概括。一個(gè)概括過程包括比較、區(qū)分、擴(kuò)張和分析等幾個(gè)主要環(huán)節(jié)5、簡(jiǎn)述公理方法歷史發(fā)展的各個(gè)階段答:公理方法經(jīng)歷
5、了具體的公理體系、抽象的公理體系和形式化的公理體系三個(gè)階段。第一個(gè)具體的公理體系就是歐幾里得的幾何原本。非歐幾何是抽象的公理體系的典型代表。希爾伯特的幾何基礎(chǔ)開創(chuàng)了形式化的公理體系的先河,現(xiàn)代數(shù)學(xué)的幾乎所有理論都是用形式公理體系表述出來的,現(xiàn)代科學(xué)也盡量采用形式公理法作為研究和表述手段。6、簡(jiǎn)述化歸方法并舉例說明。答:所謂“化歸”,從字面上看,應(yīng)可理解為轉(zhuǎn)化和歸結(jié)的意思。數(shù)學(xué)方法論中所論及的“化歸方法”是指數(shù)學(xué)家們把待解決或未解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已經(jīng)能解決或者比較容易解決的問題中去,最終求獲原問題之解答的一種手段和方法。例如:要求解四次方程
6、; 可以令 ,將原方程化為關(guān)于 的二次方程 這個(gè)方程我們會(huì)求其解: 和 ,從而得到兩個(gè)二次方程: 和 這也是我們會(huì)求解的方程,解它們便得到原方程的解: , , , .這里所用的就是化歸方法。7、簡(jiǎn)述計(jì)算和算法的含義。答:計(jì)算是指根據(jù)已知數(shù)量通過數(shù)學(xué)方法求得未知數(shù)的過程,是一種最基本的數(shù)學(xué)思想方法。隨著電子計(jì)算機(jī)的廣泛應(yīng)用,計(jì)算的重要意義更加凸現(xiàn),主要表現(xiàn)在以下幾個(gè)方面:(1)推動(dòng)了數(shù)學(xué)的應(yīng)用;(2)加快了科學(xué)的數(shù)學(xué)化進(jìn)程;(3)促進(jìn)了數(shù)學(xué)自身的發(fā)展。算法是由一組有限的規(guī)則所組成的一個(gè)過程。所謂一個(gè)算
7、法它實(shí)質(zhì)上是解決一類問題的一個(gè)處方,它包括一套指令,只要按照指令一步一步地進(jìn)行操作,就能引導(dǎo)到問題的解決。在一個(gè)算法中,每一個(gè)步驟必須規(guī)定得精確和明白,不會(huì)產(chǎn)生歧義,并且一個(gè)算法在按有限的步驟解決問題后必須結(jié)束。數(shù)學(xué)中的許多問題都可以歸結(jié)為尋找算法或判斷有無算法的問題,因此,算法對(duì)數(shù)學(xué)中的許多問題的解決有著決定性作用。另外,算法在日常生活、社會(huì)生產(chǎn)和科學(xué)技術(shù)中也有著重要意義。算法在科學(xué)技術(shù)中的意義主要體現(xiàn)在如下幾個(gè)方面:(1)用于表述科學(xué)結(jié)論的一種形式;(2)作為表述一個(gè)復(fù)雜過程的方法;(3)減輕腦力勞動(dòng)的一種手段;(4)作為研究和解決新問題的手段;(5)作為一種基本的數(shù)學(xué)工具。8簡(jiǎn)述數(shù)學(xué)教學(xué)
8、中引起“分類討論”的原因。答:數(shù)學(xué)教學(xué)中引起“分類討論”的原因有:數(shù)學(xué)中的許多概念的定義是分類給出的,因此涉及到這些概念時(shí)要分類討論;數(shù)學(xué)中有些運(yùn)算性質(zhì)、運(yùn)算法則是分類給出的,進(jìn)行這類運(yùn)算時(shí)要分類討論;有些幾何問題,根據(jù)題設(shè)不能只用一個(gè)圖形表達(dá),必須全面考慮各種不同的位置關(guān)系,需要分類討論;許多數(shù)學(xué)問題中含有字母參數(shù),隨著參數(shù)取值不同,會(huì)使問題出現(xiàn)不同的結(jié)果。因此需要對(duì)字母參數(shù)的取值情況進(jìn)行分類討論。9簡(jiǎn)述國家數(shù)學(xué)課程標(biāo)準(zhǔn)的幾個(gè)主要特點(diǎn)。答:把“現(xiàn)實(shí)數(shù)學(xué)”作為數(shù)學(xué)課程的一項(xiàng)內(nèi)容;把“數(shù)學(xué)化”作為數(shù)學(xué)課程的一個(gè)目標(biāo);把“再創(chuàng)造”作為數(shù)學(xué)教育的一條原則。把“已完成的數(shù)學(xué)”當(dāng)成是“未完成的數(shù)學(xué)”來教
9、,給學(xué)生提供“再創(chuàng)造”的機(jī)會(huì);把“問題解決”作為數(shù)學(xué)教學(xué)的一種模式;把“數(shù)學(xué)思想方法”作為課程體系的一條主線。要求學(xué)生掌握基本的數(shù)學(xué)思想方法;把“數(shù)學(xué)活動(dòng)”作為數(shù)學(xué)課程的一個(gè)方面。強(qiáng)調(diào)學(xué)生的數(shù)學(xué)活動(dòng),注重“向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì)”,幫助他們“獲得廣泛的數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn)”;把“合作交流”看成學(xué)生學(xué)習(xí)數(shù)學(xué)的一種方式。要讓學(xué)生在解決問題的過程中“學(xué)會(huì)與他人合作”,并能“與他人交流思維的過程和結(jié)果”;把“現(xiàn)代信息技術(shù)”作為學(xué)生學(xué)習(xí)數(shù)學(xué)的一種工具。10簡(jiǎn)述數(shù)學(xué)思想方法教學(xué)的主要階段。答:數(shù)學(xué)思想方法教學(xué)主要有三個(gè)階段:多次孕育、初步理解和簡(jiǎn)單應(yīng)用三個(gè)階段。二、論述題 1、論述社會(huì)科學(xué)數(shù)學(xué)化的主要
10、原因。 答:從整個(gè)科學(xué)發(fā)展趨勢(shì)來看,社會(huì)科學(xué)的數(shù)學(xué)化也是必 然的趨勢(shì),其主要原因可以歸結(jié)為有下面四個(gè)方面: 第一,社會(huì)管理需要精確化的定量依據(jù),這是促使社會(huì)科學(xué) 數(shù)學(xué)化的最根本的因素。 第二,社會(huì)科學(xué)的各分支逐步走向成熟,社會(huì)科學(xué)理論體系 的發(fā)展也需要精確化。 第三,隨著數(shù)學(xué)的進(jìn)一步發(fā)展,它出現(xiàn)了一些適合研究社會(huì) 歷史現(xiàn)象的新的數(shù)學(xué)分支。 第四,電子計(jì)算機(jī)的發(fā)展與應(yīng)用,使非常復(fù)雜社會(huì)現(xiàn)象經(jīng)過 量化后可以進(jìn)行數(shù)值處理。 2、論述數(shù)學(xué)的三次危機(jī)對(duì)數(shù)學(xué)發(fā)展的作用。 答:第一次數(shù)學(xué)危機(jī)促使人們?nèi)フJ(rèn)識(shí)和理解無理數(shù),導(dǎo)致 了公理幾何與邏輯的產(chǎn)生。 第二次數(shù)學(xué)危機(jī)促使人們?nèi)ド钊胩接憣?shí)數(shù)理論,導(dǎo)致了分析 基礎(chǔ)
11、理論的完善和集合論的產(chǎn)生。 第三次數(shù)學(xué)危機(jī)促使人們研究和分析數(shù)學(xué)悖論,導(dǎo)致了數(shù)理 邏輯和一批現(xiàn)代數(shù)學(xué)的產(chǎn)生。 由此可見,數(shù)學(xué)危機(jī)的解決,往往給數(shù)學(xué)帶來新的內(nèi)容,新 的進(jìn)展,甚至引起革命性的變革,這也反映出矛盾斗爭(zhēng)是事物發(fā) 展的歷史動(dòng)力這一基本原理。整個(gè)數(shù)學(xué)的發(fā)展史就是矛盾斗爭(zhēng)的 歷史,斗爭(zhēng)的結(jié)果就是數(shù)學(xué)領(lǐng)域的發(fā)展。3、敘述不完全歸納法的推理形式,并舉一個(gè)應(yīng)用不完全歸納法的例子。答:不完全歸納法的一般推理形式是:設(shè)S= ;由于具有屬性p,具有屬性p,具有屬性p,因此推斷S類事物中的每一個(gè)對(duì)象都可能具有屬性p。4、敘述類比推理的形式。如何提高類比的可靠性?答:類比推理通??捎孟铝行问絹肀硎荆篈具有
12、性質(zhì)B具有性質(zhì)因此,B也可能具有性質(zhì)。其中,分別相同或相似。欲提高類比的可靠性,應(yīng)盡量滿足條件:(1)A與B共同(或相似)的屬性盡可能地多些;(2)這些共同(或相似)的屬性應(yīng)是類比對(duì)象A與B的主要屬性;(3)這些共同(或相似)的屬性應(yīng)包括類比對(duì)象的各個(gè)不同方面,并且盡可能是多方面的;(4)可遷移的屬性d應(yīng)該是和屬于同一類型。符合上述條件的類比,其結(jié)論的可靠性雖然可以得到提高,但仍不能保證結(jié)論一定正確。5、試比較歸納猜想與類比猜想的異同。答:歸納猜想與類比猜想的共同點(diǎn)是:他們都是一種猜想,即一種推測(cè)性的判斷,都是一種合情推理,其結(jié)論具有或然性,或者經(jīng)過邏輯推理證明其為真,或者舉出反例予以反駁。歸
13、納猜想與類比猜想的不同點(diǎn)是:歸納猜想是運(yùn)用歸納法得到的猜想,是一種由特殊到一般的推理形式,其思維步驟為“特例歸納猜測(cè)”。類比猜想是運(yùn)用類比法得到的猜想,是一種由特殊到特殊的推理形式,其思維步驟為“聯(lián)想類比猜測(cè)”。6、什么是數(shù)學(xué)模型方法?并用框圖表示MM方法解題的基本步驟。答:所謂數(shù)學(xué)模型方法是利用數(shù)學(xué)模型解決問題的一般數(shù)學(xué)方法,簡(jiǎn)稱MM方法。MM方法解題的基本步驟框圖表示如下:7、特殊化方法在數(shù)學(xué)教學(xué)中有哪些應(yīng)用?答:特殊化方法在數(shù)學(xué)教學(xué)中的應(yīng)用大致有如下幾個(gè)方面:利用特殊值(圖形)解選擇題;利用特殊化探求問題結(jié)論;利用特例檢驗(yàn)一般結(jié)果;利用特殊化探索解題思路。8試述小學(xué)數(shù)學(xué)加強(qiáng)數(shù)學(xué)思想方法教
14、學(xué)的重要性。答:數(shù)學(xué)思想方法是聯(lián)系知識(shí)與能力的紐帶,是數(shù)學(xué)科學(xué)的靈魂,它對(duì)發(fā)展學(xué)生的數(shù)學(xué)能力,提高學(xué)生的思維品質(zhì)都具有十分重要的作用。具體表現(xiàn)在:(1)掌握數(shù)學(xué)思想方法能更好地理解數(shù)學(xué)知識(shí)。(2)數(shù)學(xué)思想方法對(duì)數(shù)學(xué)問題的解決有著重要的作用。(3)加強(qiáng)數(shù)學(xué)思想方法的教學(xué)是以學(xué)生發(fā)展為本的必然要求。9、簡(jiǎn)述數(shù)學(xué)思想方法教學(xué)應(yīng)注意哪些事項(xiàng)?答:數(shù)學(xué)思想方法教學(xué)應(yīng)注意以下事項(xiàng):(1)把數(shù)學(xué)思想方法的教學(xué)納入教學(xué)目標(biāo);(2) 重視數(shù)學(xué)知識(shí)發(fā)生、發(fā)展的過程,認(rèn)真設(shè)計(jì)數(shù)學(xué)思想方法教學(xué)的目標(biāo);(3) 做好數(shù)學(xué)思想方法教學(xué)的鋪墊工作和鞏固工作;(4) 不同數(shù)學(xué)思想方法應(yīng)有不同的教學(xué)要求;(5)注意不同數(shù)學(xué)思想方
15、法的綜合應(yīng)用。13、 分析題4、 幾何原本思想方法的特點(diǎn),為什么? 答:(1)封閉的演繹體系 因?yàn)樵趲缀卧局校送茖?dǎo)時(shí)所需要的邏輯規(guī)則外, 每個(gè)定理的證明所采用的論據(jù)均是公設(shè)、公理或前面已經(jīng)證明過 的定理,并且引入的概念(除原始概念)也基本上是符合邏輯上 對(duì)概念下定義的要求,原則上不再依賴其它東西。因此幾何原 本是一個(gè)封閉的演繹體系。另外,幾何原本的理論體系回避任何與社會(huì)生產(chǎn)現(xiàn)實(shí)生 活有關(guān)的應(yīng)用問題,因此對(duì)于社會(huì)生活的各個(gè)領(lǐng)域來說,它也是 封閉的。所以,幾何原本是一個(gè)封閉的演繹體系。 (2)抽象化的內(nèi)容 :幾何原本中研究的對(duì)象都是抽象的概念和命題,它所探 討的是這些概念和命題之間的邏輯關(guān)系
16、,不討論這些概念和命題 與社會(huì)生活之間的關(guān)系,也不考察這些數(shù)學(xué)模型所由之產(chǎn)生的現(xiàn)實(shí)原型。因此幾何原本的內(nèi)容是抽象的。(3)公理化的方法:幾何原本的第一篇中開頭5個(gè)公設(shè)和5個(gè)公理,是全書其 它命題證明的基本前提,接著給出23個(gè)定義,然后再逐步引入 和證明定理。定理的引入是有序的,在一個(gè)定理的證明中,允許采用的論據(jù)只有公設(shè)和公理與前面已經(jīng)證明過的定理。以后各篇 除了不再給出公設(shè)和公理外也都照此辦理。這種處理知識(shí)體系與 表述方法就是公理化方法。 2、分析九章算術(shù)思想方法的特點(diǎn),為什么? 答:(1)開放的歸納體系:從九章算術(shù)的內(nèi)容可以看出,它是以應(yīng)用問題解法集成 的體例編纂而成的書,因此它是一個(gè)與社會(huì)
17、實(shí)踐緊密聯(lián)系的開放 體系。 在九章算術(shù)中通常是先舉出一些問題,從中歸納出某一 類問題的一般解法;再把各類算法綜合起來,得到解決該領(lǐng)域中 各種問題的方法;最后,把解決各領(lǐng)域中問題的數(shù)學(xué)方法全部綜 合起來,就得到整個(gè)九章算術(shù)。另外該書還按解決問題的不同數(shù)學(xué)方法進(jìn)行歸納,從這些 方法中提煉出數(shù)學(xué)模型,最后再以數(shù)學(xué)模型立章寫入九章算 術(shù)。 因此,九章算術(shù)是一個(gè)開放的歸納體系。(2)算法化的內(nèi)容 :九章算術(shù)在每一章內(nèi)先列舉若干個(gè)實(shí)際問題,并對(duì)每 個(gè)問題都給出答案,然后再給出“術(shù)”,作為一類問題的共同解 法。因此,內(nèi)容的算法化是九章算術(shù)思想方法上的特點(diǎn)之 一。 (3)模型化的方法 :九章算術(shù)各章都是先從相
18、應(yīng)的社會(huì)實(shí)踐中選擇具有典 型意義的現(xiàn)實(shí)原型,并把它們表述成問題,然后通過“術(shù)”使其轉(zhuǎn) 化為數(shù)學(xué)模型。當(dāng)然有的章采取的是由數(shù)學(xué)模型到原型的過 程,即先給出數(shù)學(xué)模型,然后再舉出可以應(yīng)用的原型。3用下列材料,請(qǐng)你設(shè)計(jì)一個(gè)“數(shù)形結(jié)合”教學(xué)片斷。材料:如圖13-3-18所示,相鄰四點(diǎn)連成的小正方形面積為1平方厘米。(1)分別連接各點(diǎn),組成下面12個(gè)圖形,你發(fā)現(xiàn)有什么排列規(guī)律?(2)求出各圖形外面一周的點(diǎn)子數(shù)、中間的點(diǎn)子數(shù)以及各圖形的面積,找出一周的點(diǎn)子數(shù)、中間的點(diǎn)子數(shù)、各圖形的面積三者之間的關(guān)系。教學(xué)片斷設(shè)計(jì)如下:一、找圖的排列規(guī)律師:同學(xué)們看圖,找出圖的排列規(guī)律來。(學(xué)生可以討論)生:老師我們發(fā)現(xiàn),第
19、一行的圖中間沒有點(diǎn),第二行的圖中間有一個(gè)點(diǎn),第三行的圖中間有兩個(gè)點(diǎn)。師:非常好!二、數(shù)一數(shù)每個(gè)圖周邊的點(diǎn)數(shù)師:現(xiàn)在我們來數(shù)一數(shù)每個(gè)圖周邊的點(diǎn)數(shù)。并將結(jié)果填入下列表中。(師生一起數(shù))三、計(jì)算面積師:數(shù)完邊點(diǎn)數(shù),我們?cè)賮碛?jì)算每個(gè)圖的面積。結(jié)果也填入表中。(師生一起計(jì)算面積,過程略) 圖形邊上點(diǎn)數(shù)內(nèi)部點(diǎn)數(shù)面積401(2)6023)803(4)1406(5)412(6)613(7)814(8)1417(9)423(10)624(11)825(12)1428四、尋找每一列三個(gè)數(shù)之間的規(guī)律師:我們根據(jù)這個(gè)表,找一找每列三個(gè)數(shù)之間的關(guān)系。告訴同學(xué)們,希望找到相同的規(guī)律。生:第一列,邊點(diǎn)數(shù)等于面積乘以4。師:
20、這個(gè)規(guī)律能否用到第二列呢?生:不能,因?yàn)?不等于2乘以4。生2:第一列,邊點(diǎn)數(shù)除以2,減去面積等于1。師:好!看看這個(gè)規(guī)律能否用到第二列?生:能。還能用到第三、第四列。生2:老師,這個(gè)規(guī)律不能用到第五列。師:很好!我們看看這個(gè)規(guī)律到第五列可以怎樣改一改。生:我發(fā)現(xiàn)了,邊點(diǎn)數(shù)除以2,加上內(nèi)點(diǎn)數(shù),再減去面積等于1。師:非常好!大家一起算一算,是不是每一列都具有這個(gè)規(guī)律。五、總結(jié)師:我們把發(fā)現(xiàn)的規(guī)律總結(jié)成公式:邊點(diǎn)數(shù)/2內(nèi)點(diǎn)數(shù)面積1也可以寫為:邊點(diǎn)數(shù)/2內(nèi)點(diǎn)數(shù)1面積4、假定學(xué)生已有了除法商的不變性知識(shí)和經(jīng)驗(yàn),在學(xué)習(xí)分?jǐn)?shù)的性質(zhì)時(shí),請(qǐng)你設(shè)計(jì)一個(gè)孕育“類比法”教學(xué)片斷。提示:所設(shè)計(jì)的教學(xué)片斷要求(1)以小
21、組合作探究的形式,讓學(xué)生舉例說明除法的被除數(shù)和除數(shù)與分?jǐn)?shù)的分子和分母之間存在什么樣的關(guān)系(相似關(guān)系)?商與分?jǐn)?shù)又有什么關(guān)系(相似關(guān)系)?那么與被除數(shù)、除數(shù)同時(shí)擴(kuò)大或縮小相同的倍數(shù)其商不變相似的結(jié)論又是什么呢?。教學(xué)片斷設(shè)計(jì)如下:一、回憶除法和分?jǐn)?shù)的有關(guān)概念師:同學(xué)們還記得除法的哪些概念和記號(hào)?生:被除數(shù)÷除數(shù)商師:對(duì)。我們?cè)倩貞浄謹(jǐn)?shù)的概念和記號(hào)。師:好。大家一起來比較這兩個(gè)概念的相似性。生:商好比分?jǐn)?shù),被除數(shù)好比分子。除數(shù)好比分母。二、回憶除法的性質(zhì)師:很好。現(xiàn)在我們回憶除法有哪些性質(zhì)。生:被除數(shù)與除數(shù)同時(shí)擴(kuò)大,商不變。生2:被除數(shù)與除數(shù)同時(shí)縮小,商也不變。三、類比出分?jǐn)?shù)的性質(zhì)師:對(duì)
22、。剛才我們知道商好比分?jǐn)?shù),因此我們可以問:除法的這些性質(zhì)是否可以類比到分?jǐn)?shù)上來呀?生:可以。師:應(yīng)該怎樣類比呢?生:分子與分母同時(shí)擴(kuò)大,分?jǐn)?shù)不變。生2:分子與分母同時(shí)縮小,分?jǐn)?shù)不變。四、總結(jié)成公式師:很好!這些性質(zhì)怎樣用公式表示呢?生:可以列表如下:除法分?jǐn)?shù)除法的表示:A÷B分?jǐn)?shù)的表示:性質(zhì)(一):若M0,則(A×M)÷(B×M)= A÷B分?jǐn)?shù)的性質(zhì)(一):若M0,則性質(zhì)(二):若M0,則(A÷M)÷(B÷M)= A÷B分?jǐn)?shù)的性質(zhì)(二):若M0,則性質(zhì)(三):A÷B÷C=A÷
23、(B×C)分?jǐn)?shù)的性質(zhì)(三):性質(zhì)(四):(A÷B)÷(C÷D)= (A×D)÷(B×C)分?jǐn)?shù)的性質(zhì)(四):小學(xué)數(shù)學(xué)數(shù)形結(jié)合思想一、數(shù)形結(jié)合的思想方法 數(shù)與形是數(shù)學(xué)教學(xué)研究對(duì)象的兩個(gè)側(cè)面,把數(shù)量關(guān)系和空間形式結(jié)合起來去分析問題、解決問題,就是數(shù)形結(jié)合思想?!皵?shù)形結(jié)合”可以借助簡(jiǎn)單的圖形、符號(hào)和文字所作的示意圖,促進(jìn)學(xué)生形象思維和抽象思維的協(xié)調(diào)發(fā)展,溝通數(shù)學(xué)知識(shí)之間的聯(lián)系,從復(fù)雜的數(shù)量關(guān)系中凸顯最本質(zhì)的特征。它是小學(xué)數(shù)學(xué)教材編排的重要原則,也是小學(xué)數(shù)學(xué)教材的一個(gè)重要特點(diǎn),更是解決問題時(shí)常用的方法。 例如,我們常用畫線段圖的方法來
24、解答應(yīng)用題,這是用圖形來代替數(shù)量關(guān)系的一種方法。我們又可以通過代數(shù)方法來研究幾何圖形的周長(zhǎng)、面積、體積等,這些都體現(xiàn)了數(shù)形結(jié)合的思想。 二、集合的思想方法 把一組對(duì)象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對(duì)象,如數(shù)學(xué)上的點(diǎn)、數(shù)、式放在一起作為研究對(duì)象,這種思想就是集合思想。集合思想作為一種思想,在小學(xué)數(shù)學(xué)中就有所體現(xiàn)。在小學(xué)數(shù)學(xué)中,集合概念是通過畫集合圖的辦法來滲透的。 如用圓圈圖(韋恩圖)向?qū)W生直觀的滲透集合概念。讓他們感知圈內(nèi)的物體具有某種共同的屬性,可以看作一個(gè)整體,這個(gè)整體就是一個(gè)集合。利用圖形間的關(guān)系則可向?qū)W生滲透集合之間的關(guān)系,如長(zhǎng)方形集合
25、包含正方形集合,平行四邊形集合包含長(zhǎng)方形集合,四邊形集合又包含平行四邊行集合等。 三、對(duì)應(yīng)的思想方法 對(duì)應(yīng)是人的思維對(duì)兩個(gè)集合間問題聯(lián)系的把握,是現(xiàn)代數(shù)學(xué)的一個(gè)最基本的概念。小學(xué)數(shù)學(xué)教學(xué)中主要利用虛線、實(shí)線、箭頭、計(jì)數(shù)器等圖形將元素與元素、實(shí)物與實(shí)物、數(shù)與算式、量與量聯(lián)系起來,滲透對(duì)應(yīng)思想。如人教版一年級(jí)上冊(cè)教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對(duì)應(yīng)后,進(jìn)行多少的比較學(xué)習(xí),向?qū)W生滲透了事物間的對(duì)應(yīng)關(guān)系,為學(xué)生解決問題提供了思想方法。 四、函數(shù)的思想方法 恩格斯說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù)。有了變數(shù),運(yùn)動(dòng)進(jìn)入了數(shù)學(xué),有了變數(shù),辯證法進(jìn)入了數(shù)學(xué),有了變數(shù),微分和積分
26、也就立刻成為必要的了?!蔽覀冎?運(yùn)動(dòng)、變化是客觀事物的本質(zhì)屬性。函數(shù)思想的可貴之處正在于它是運(yùn)動(dòng)、變化的觀點(diǎn)去反映客觀事物數(shù)量間的相互聯(lián)系和內(nèi)在規(guī)律的。學(xué)生對(duì)函數(shù)概念的理解有一個(gè)過程。在小學(xué)數(shù)學(xué)教學(xué)中,教師在處理一些問題時(shí)就要做到心中有函數(shù)思想,注意滲透函數(shù)思想。 函數(shù)思想在人教版一年級(jí)上冊(cè)教材中就有滲透。如讓學(xué)生觀察20以內(nèi)進(jìn)位加法表,發(fā)現(xiàn)加數(shù)的變化引起的和的變化的規(guī)律等,都較好的滲透了函數(shù)的思想,其目的都在于幫助學(xué)生形成初步的函數(shù)概念。 五、極限的思想方法 極限的思想方法是人們從有限中認(rèn)識(shí)無限,從近似中認(rèn)識(shí)精確,從量變中認(rèn)識(shí)質(zhì)變的一種數(shù)學(xué)思想方法,它是事物轉(zhuǎn)化的重要環(huán)節(jié),了解它有重要意義
27、。 現(xiàn)行小學(xué)教材中有許多處注意了極限思想的滲透。在“自然數(shù)”、“奇數(shù)”、“偶數(shù)”這些概念教學(xué)時(shí),教師可讓學(xué)生體會(huì)自然數(shù)是數(shù)不完的,奇數(shù)、偶數(shù)的個(gè)數(shù)有無限多個(gè),讓學(xué)生初步體會(huì)“無限”思想;在循環(huán)小數(shù)這一部分內(nèi)容中,1÷3=0.333是一循環(huán)小數(shù),它的小數(shù)點(diǎn)后面的數(shù)字是寫不完的,是無限的;在直線、射線、平行線的教學(xué)時(shí),可讓學(xué)生體會(huì)線的兩端是可以無限延長(zhǎng)的。 六、化歸的思想方法 化歸是解決數(shù)學(xué)問題常用的思想方法。化歸,是指將有待解決或未解決的問題,通過轉(zhuǎn)化過程,歸結(jié)為一類已經(jīng)解決或較易解決的問題中去,以求得解決??陀^事物是不斷發(fā)展變化的,事物之間的相互聯(lián)系和轉(zhuǎn)化,是現(xiàn)實(shí)世界的普遍規(guī)律。數(shù)學(xué)中充滿了矛盾,如已知和未知、復(fù)雜和簡(jiǎn)單、熟悉和陌生、困難和容易等,實(shí)現(xiàn)這些矛盾的轉(zhuǎn)化,化未知為已知,化復(fù)雜為簡(jiǎn)單,化陌生為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年版模具鋼材原材料追溯與供應(yīng)鏈追溯合同3篇
- 2025年度個(gè)人二手房交易貸款擔(dān)保合同樣本4篇
- 二零二五年度互聯(lián)網(wǎng)廣告發(fā)布合同樣本4篇
- 2025年度汽車短期租賃合同模板4篇
- 工廠保安協(xié)議書(2篇)
- 2025年度個(gè)人房屋租賃定金協(xié)議及租賃雙方權(quán)利義務(wù)2篇
- 二零二五年度苗木種植與森林防火合作協(xié)議4篇
- 2025年度二手車買賣雙方責(zé)任界定協(xié)議3篇
- 2025年度個(gè)人房產(chǎn)抵押貸款合同風(fēng)險(xiǎn)評(píng)估報(bào)告4篇
- 2024年中級(jí)經(jīng)濟(jì)師考試題庫含解析答案
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運(yùn)輸安全保障協(xié)議版B版
- 《食品與食品》課件
- 讀書分享會(huì)《白夜行》
- 光伏工程施工組織設(shè)計(jì)
- DB4101-T 121-2024 類家庭社會(huì)工作服務(wù)規(guī)范
- 智研咨詢發(fā)布-2023年中國智能驅(qū)鳥裝置行業(yè)現(xiàn)狀、發(fā)展環(huán)境及深度分析報(bào)告
- 不抱怨的世界-讀后感課件
- 安慶時(shí)聯(lián)新材料有限責(zé)任公司10000噸年抗氧劑系列產(chǎn)品及抗紫外線吸收劑生產(chǎn)項(xiàng)目環(huán)境影響報(bào)告
- 中醫(yī)師承申請(qǐng)表
- 臨床微生物檢查課件 第2章細(xì)菌的生理
評(píng)論
0/150
提交評(píng)論