版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、會(huì)計(jì)學(xué)1多元函數(shù)的概念多元函數(shù)的概念ppt課件課件第一頁(yè),編輯于星期一:二十點(diǎn) 十五分。 設(shè)設(shè)),(000yxP是是xoy平面上的一個(gè)點(diǎn),平面上的一個(gè)點(diǎn), 是某是某一正數(shù),與點(diǎn)一正數(shù),與點(diǎn)),(000yxP距離小于距離小于 的點(diǎn)的點(diǎn)),(yxP的全體,稱為點(diǎn)的全體,稱為點(diǎn)0P的的 鄰域,記為鄰域,記為),(0 PU,(1)鄰域)鄰域0P ),(0 PU |0PPP .)()(| ),(2020 yyxxyx 第1頁(yè)/共49頁(yè)第二頁(yè),編輯于星期一:二十點(diǎn) 十五分。(2)區(qū)域)區(qū)域.)(的內(nèi)點(diǎn)的內(nèi)點(diǎn)為為則稱則稱,的某一鄰域的某一鄰域一個(gè)點(diǎn)如果存在點(diǎn)一個(gè)點(diǎn)如果存在點(diǎn)是平面上的是平面上的是平面上的一個(gè)
2、點(diǎn)集,是平面上的一個(gè)點(diǎn)集,設(shè)設(shè)EPEPUPPE .EE 的內(nèi)點(diǎn)屬于的內(nèi)點(diǎn)屬于EP .為開集為開集則稱則稱的點(diǎn)都是內(nèi)點(diǎn),的點(diǎn)都是內(nèi)點(diǎn),如果點(diǎn)集如果點(diǎn)集EE41),(221 yxyxE例如,例如,即為開集即為開集第2頁(yè)/共49頁(yè)第三頁(yè),編輯于星期一:二十點(diǎn) 十五分。的邊界點(diǎn)的邊界點(diǎn)為為),則稱),則稱可以不屬于可以不屬于,也,也本身可以屬于本身可以屬于的點(diǎn)(點(diǎn)的點(diǎn)(點(diǎn)也有不屬于也有不屬于的點(diǎn),的點(diǎn),于于的任一個(gè)鄰域內(nèi)既有屬的任一個(gè)鄰域內(nèi)既有屬如果點(diǎn)如果點(diǎn)EPEEPEEPEP 的的邊邊界界的的邊邊界界點(diǎn)點(diǎn)的的全全體體稱稱為為 EE是連通的是連通的開集開集,則稱,則稱且該折線上的點(diǎn)都屬于且該折線上的點(diǎn)
3、都屬于連結(jié)起來,連結(jié)起來,任何兩點(diǎn),都可用折線任何兩點(diǎn),都可用折線內(nèi)內(nèi)是開集如果對(duì)于是開集如果對(duì)于設(shè)設(shè)DDDD 第3頁(yè)/共49頁(yè)第四頁(yè),編輯于星期一:二十點(diǎn) 十五分。連通的開集稱為區(qū)域或開區(qū)域連通的開集稱為區(qū)域或開區(qū)域.41| ),(22 yxyx例如,例如,xyo開開區(qū)區(qū)域域連連同同它它的的邊邊界界一一起起稱稱為為閉閉區(qū)區(qū)域域.41| ),(22 yxyx例如,例如,xyo第4頁(yè)/共49頁(yè)第五頁(yè),編輯于星期一:二十點(diǎn) 十五分。0| ),( yxyx有界閉區(qū)域;有界閉區(qū)域;無界開區(qū)域無界開區(qū)域xyo例如,例如,則稱為無界點(diǎn)集則稱為無界點(diǎn)集為有界點(diǎn)集,否為有界點(diǎn)集,否成立,則稱成立,則稱對(duì)一切對(duì)
4、一切即即,不超過不超過間的距離間的距離與某一定點(diǎn)與某一定點(diǎn),使一切點(diǎn),使一切點(diǎn)如果存在正數(shù)如果存在正數(shù)對(duì)于點(diǎn)集對(duì)于點(diǎn)集EEPKAPKAPAEPKE 41| ),(22 yxyx第5頁(yè)/共49頁(yè)第六頁(yè),編輯于星期一:二十點(diǎn) 十五分。(3)聚點(diǎn))聚點(diǎn) 設(shè)設(shè) E 是是平平面面上上的的一一個(gè)個(gè)點(diǎn)點(diǎn)集集,P 是是平平面面上上的的一一個(gè)個(gè)點(diǎn)點(diǎn),如如果果點(diǎn)點(diǎn) P 的的任任何何一一個(gè)個(gè)鄰鄰域域內(nèi)內(nèi)總總有有無無限限多多個(gè)個(gè)點(diǎn)點(diǎn)屬屬于于點(diǎn)點(diǎn)集集 E,則則稱稱 P 為為 E 的的聚聚點(diǎn)點(diǎn). 內(nèi)點(diǎn)一定是聚點(diǎn);內(nèi)點(diǎn)一定是聚點(diǎn); 邊界點(diǎn)可能是聚點(diǎn);邊界點(diǎn)可能是聚點(diǎn);10| ),(22 yxyx例例(0,0)既是既是邊界點(diǎn)
5、也是聚點(diǎn)邊界點(diǎn)也是聚點(diǎn)第6頁(yè)/共49頁(yè)第七頁(yè),編輯于星期一:二十點(diǎn) 十五分。 點(diǎn)集點(diǎn)集E的聚點(diǎn)可以屬于的聚點(diǎn)可以屬于E,也可以不屬于,也可以不屬于E10| ),(22 yxyx例如例如,(0,0) 是聚點(diǎn)但不屬于集合是聚點(diǎn)但不屬于集合1| ),(22 yxyx例如例如,邊界上的點(diǎn)都是聚點(diǎn)也都屬于集合邊界上的點(diǎn)都是聚點(diǎn)也都屬于集合第7頁(yè)/共49頁(yè)第八頁(yè),編輯于星期一:二十點(diǎn) 十五分。(4)n維空間維空間 設(shè)設(shè)n為為取取定定的的一一個(gè)個(gè)自自然然數(shù)數(shù),我我們們稱稱n元元數(shù)數(shù)組組),(21nxxx的的全全體體為為n維維空空間間,而而每每個(gè)個(gè)n元元數(shù)數(shù)組組),(21nxxx稱稱為為n維維空空間間中中的的
6、一一個(gè)個(gè)點(diǎn)點(diǎn),數(shù)數(shù)ix稱稱為為該該點(diǎn)點(diǎn)的的第第i個(gè)個(gè)坐坐標(biāo)標(biāo). n維空間的記號(hào)為維空間的記號(hào)為;nR n維空間中兩點(diǎn)間距離公式維空間中兩點(diǎn)間距離公式 第8頁(yè)/共49頁(yè)第九頁(yè),編輯于星期一:二十點(diǎn) 十五分。),(21nxxxP),(21nyyyQ.)()()(|2222211nnxyxyxyPQ n維空間中鄰域、區(qū)域等概念維空間中鄰域、區(qū)域等概念 nRPPPPPU ,|),(00 特殊地當(dāng)特殊地當(dāng) 時(shí),便為數(shù)軸、平面、時(shí),便為數(shù)軸、平面、空間兩點(diǎn)間的距離空間兩點(diǎn)間的距離3, 2, 1 n內(nèi)點(diǎn)、邊界點(diǎn)、區(qū)域、聚點(diǎn)等概念也可定義內(nèi)點(diǎn)、邊界點(diǎn)、區(qū)域、聚點(diǎn)等概念也可定義鄰域:鄰域:設(shè)兩點(diǎn)為設(shè)兩點(diǎn)為第9頁(yè)
7、/共49頁(yè)第十頁(yè),編輯于星期一:二十點(diǎn) 十五分。 設(shè)設(shè)D是平面上的一個(gè)點(diǎn)集,如果對(duì)于每個(gè)點(diǎn)是平面上的一個(gè)點(diǎn)集,如果對(duì)于每個(gè)點(diǎn)DyxP ),(,變量,變量z按照一定的法則總有確定的按照一定的法則總有確定的值和它對(duì)應(yīng),則稱值和它對(duì)應(yīng),則稱z是變量是變量yx,的二元函數(shù),記為的二元函數(shù),記為),(yxfz (或記為(或記為)(Pfz ). .(5)二元函數(shù)的定義)二元函數(shù)的定義當(dāng)當(dāng)2 n時(shí)時(shí),n元元函函數(shù)數(shù)統(tǒng)統(tǒng)稱稱為為多多元元函函數(shù)數(shù). 多元函數(shù)中同樣有定義域、值域、自變量、多元函數(shù)中同樣有定義域、值域、自變量、因變量等概念因變量等概念.類似地可定義三元及三元以上函數(shù)類似地可定義三元及三元以上函數(shù)第
8、10頁(yè)/共49頁(yè)第十一頁(yè),編輯于星期一:二十點(diǎn) 十五分。例例1 1 求求 的定義的定義域域222)3arcsin(),(yxyxyxf 解解 013222yxyx 22242yxyx所求定義域?yàn)樗蠖x域?yàn)?, 42| ),(222yxyxyxD 第11頁(yè)/共49頁(yè)第十二頁(yè),編輯于星期一:二十點(diǎn) 十五分。(6) 二元函數(shù)二元函數(shù) 的圖形的圖形),(yxfz 設(shè)函數(shù)設(shè)函數(shù)),(yxfz 的定義域?yàn)榈亩x域?yàn)镈,對(duì)于任意,對(duì)于任意取定的取定的DyxP ),(,對(duì)應(yīng)的函數(shù)值為,對(duì)應(yīng)的函數(shù)值為),(yxfz ,這樣,以,這樣,以x為橫坐標(biāo)、為橫坐標(biāo)、y為縱坐為縱坐標(biāo)、標(biāo)、z為豎坐標(biāo)在空間就確定一點(diǎn)為豎
9、坐標(biāo)在空間就確定一點(diǎn)),(zyxM,當(dāng)當(dāng)x取遍取遍D上一切點(diǎn)時(shí),得一個(gè)空間點(diǎn)集上一切點(diǎn)時(shí),得一個(gè)空間點(diǎn)集),(),(| ),(Dyxyxfzzyx ,這個(gè)點(diǎn)集稱,這個(gè)點(diǎn)集稱為二元函數(shù)的圖形為二元函數(shù)的圖形.(如下頁(yè)圖)(如下頁(yè)圖)第12頁(yè)/共49頁(yè)第十三頁(yè),編輯于星期一:二十點(diǎn) 十五分。二元函數(shù)的圖形通常是一張曲面二元函數(shù)的圖形通常是一張曲面.第13頁(yè)/共49頁(yè)第十四頁(yè),編輯于星期一:二十點(diǎn) 十五分。xyzoxyzsin 例如例如,圖形如右圖圖形如右圖.2222azyx 例如例如,左圖球面左圖球面.),(222ayxyxD 222yxaz .222yxaz 單值分支單值分支:第14頁(yè)/共49頁(yè)
10、第十五頁(yè),編輯于星期一:二十點(diǎn) 十五分。定 義定 義 1 1 設(shè) 函 數(shù)設(shè) 函 數(shù)),(yxfz 的 定 義 域 為的 定 義 域 為),(,000yxPD是其聚點(diǎn),如果對(duì)于任意給定的是其聚點(diǎn),如果對(duì)于任意給定的正數(shù)正數(shù) ,總存在正數(shù),總存在正數(shù) ,使得對(duì)于適合不等式,使得對(duì)于適合不等式 20200)()(|0yyxxPP的 一 切的 一 切點(diǎn),都有點(diǎn),都有 |),(|Ayxf成立,則稱成立,則稱 A A 為函數(shù)為函數(shù)),(yxfz 當(dāng)當(dāng)0 xx ,0yy 時(shí)的極限,時(shí)的極限,記為記為 Ayxfyyxx ),(lim00 (或(或)0(),( Ayxf這里這里|0PP ).第15頁(yè)/共49頁(yè)第
11、十六頁(yè),編輯于星期一:二十點(diǎn) 十五分。說明:說明:(1)定義中)定義中 的方式是任意的;的方式是任意的;0PP (2)二元函數(shù)的極限也叫二重極限)二元函數(shù)的極限也叫二重極限);,(lim00yxfyyxx(3)二元函數(shù)的極限運(yùn)算法則與一元函數(shù)類似)二元函數(shù)的極限運(yùn)算法則與一元函數(shù)類似第16頁(yè)/共49頁(yè)第十七頁(yè),編輯于星期一:二十點(diǎn) 十五分。例例2 2 求證求證 證證01sin)(lim222200 yxyxyx01sin)(2222 yxyx22221sinyxyx 22yx , 0 , 當(dāng)當(dāng) 時(shí),時(shí), 22)0()0(0yx 01sin)(2222yxyx原結(jié)論成立原結(jié)論成立第17頁(yè)/共49
12、頁(yè)第十八頁(yè),編輯于星期一:二十點(diǎn) 十五分。例例3 3 求極限求極限 .)sin(lim22200yxyxyx 解解22200)sin(limyxyxyx ,)sin(lim2222200yxyxyxyxyx 其中其中yxyxyx2200)sin(limuuusinlim0, 1 222yxyx x21 , 00 x. 0)sin(lim22200 yxyxyxyxu2 第18頁(yè)/共49頁(yè)第十九頁(yè),編輯于星期一:二十點(diǎn) 十五分。例例4 4 證明證明 不存在不存在 證證26300limyxyxyx 取取,3kxy 26300limyxyxyx 6263303limxkxkxxkxyx ,12kk
13、其值隨其值隨k的不同而變化,的不同而變化,故極限不存在故極限不存在第19頁(yè)/共49頁(yè)第二十頁(yè),編輯于星期一:二十點(diǎn) 十五分。不存在不存在.觀觀察察26300limyxyxyx ,263圖形圖形yxyxz 播放播放第20頁(yè)/共49頁(yè)第二十一頁(yè),編輯于星期一:二十點(diǎn) 十五分。(1) 令令),(yxP沿沿kxy 趨趨向向于于),(000yxP,若若極極限限值值與與k有有關(guān)關(guān),則則可可斷斷言言極極限限不不存存在在;(2) 找兩種不同趨近方式,使找兩種不同趨近方式,使),(lim00yxfyyxx存在,存在,但兩者不相等,此時(shí)也可斷言但兩者不相等,此時(shí)也可斷言),(yxf在點(diǎn)在點(diǎn)),(000yxP處極限
14、不存在處極限不存在確定極限確定極限不存在不存在的方法:的方法:第21頁(yè)/共49頁(yè)第二十二頁(yè),編輯于星期一:二十點(diǎn) 十五分。定義定義 2 2 設(shè)設(shè)n元函數(shù)元函數(shù))(Pf的定義域?yàn)辄c(diǎn)集的定義域?yàn)辄c(diǎn)集0, PD是其聚點(diǎn),如果對(duì)于任意給定的正數(shù)是其聚點(diǎn),如果對(duì)于任意給定的正數(shù) ,總 存 在 正 數(shù)總 存 在 正 數(shù) , 使 得 對(duì) 于 適 合 不 等 式, 使 得 對(duì) 于 適 合 不 等 式 |00PP的 一 切 點(diǎn)的 一 切 點(diǎn)DP , 都 有, 都 有 |)(|APf成立,則稱成立,則稱 A A 為為n元函數(shù)元函數(shù))(Pf當(dāng)當(dāng)0PP 時(shí)的極限,記為時(shí)的極限,記為 APfPP )(lim0. .n元
15、元函函數(shù)數(shù)的的極極限限利用點(diǎn)函數(shù)的形式有利用點(diǎn)函數(shù)的形式有第22頁(yè)/共49頁(yè)第二十三頁(yè),編輯于星期一:二十點(diǎn) 十五分。 設(shè)設(shè)n元函數(shù)元函數(shù))(Pf的定義域?yàn)辄c(diǎn)集的定義域?yàn)辄c(diǎn)集0, PD是其聚點(diǎn)且是其聚點(diǎn)且DP 0,如果,如果)()(lim00PfPfPP 則稱則稱n元函數(shù)元函數(shù))(Pf在點(diǎn)在點(diǎn)0P處連續(xù)處連續(xù). . 設(shè)設(shè)0P是是函函數(shù)數(shù))(Pf的的定定義義域域的的聚聚點(diǎn)點(diǎn),如如果果)(Pf在在點(diǎn)點(diǎn)0P處處不不連連續(xù)續(xù),則則稱稱0P是是函函數(shù)數(shù))(Pf的的間間斷斷點(diǎn)點(diǎn).定義定義3 3第23頁(yè)/共49頁(yè)第二十四頁(yè),編輯于星期一:二十點(diǎn) 十五分。例例5 5 討論函數(shù)討論函數(shù) )0 , 0(),(,
16、0)0 , 0(),(,),(2233yxyxyxyxyxf在在(0,0)處的連續(xù)性處的連續(xù)性解解取取,cos x sin y)0 , 0(),(fyxf )cos(sin33 2 第24頁(yè)/共49頁(yè)第二十五頁(yè),編輯于星期一:二十點(diǎn) 十五分。 2)0 , 0(),(fyxf故函數(shù)在故函數(shù)在(0,0)處連續(xù)處連續(xù).),0 , 0(),(lim)0,0(),(fyxfyx , 0 ,2 當(dāng)當(dāng) 時(shí)時(shí) 220yx第25頁(yè)/共49頁(yè)第二十六頁(yè),編輯于星期一:二十點(diǎn) 十五分。例例6 6 討論函數(shù)討論函數(shù) 0, 00,),(222222yxyxyxxyyxf在在(0,0)的連續(xù)性的連續(xù)性解解取取kxy 22
17、00limyxxyyx 22220limxkxkxkxyx 21kk 其值隨其值隨k的不同而變化,的不同而變化,極限不存在極限不存在故函數(shù)在故函數(shù)在(0,0)處不連續(xù)處不連續(xù)第26頁(yè)/共49頁(yè)第二十七頁(yè),編輯于星期一:二十點(diǎn) 十五分。閉區(qū)域上連續(xù)函數(shù)的性質(zhì)閉區(qū)域上連續(xù)函數(shù)的性質(zhì) 在有界閉區(qū)域在有界閉區(qū)域D D上的多元連續(xù)函數(shù),在上的多元連續(xù)函數(shù),在D D上至少取得它的最大值和最小值各一次上至少取得它的最大值和最小值各一次 在有界閉區(qū)域在有界閉區(qū)域D D上的多元連續(xù)函數(shù),如上的多元連續(xù)函數(shù),如果在果在D D上取得兩個(gè)不同的函數(shù)值,則它在上取得兩個(gè)不同的函數(shù)值,則它在D D上取上取得介于這兩值之間
18、的任何值至少一次得介于這兩值之間的任何值至少一次(1)最大值和最小值定理)最大值和最小值定理(2)介值定理)介值定理第27頁(yè)/共49頁(yè)第二十八頁(yè),編輯于星期一:二十點(diǎn) 十五分。(3)一致連續(xù)性定理)一致連續(xù)性定理 在有界閉區(qū)域在有界閉區(qū)域D D上的多元連續(xù)函數(shù)必定在上的多元連續(xù)函數(shù)必定在D D上一致連續(xù)上一致連續(xù)多元初等函數(shù):由多元多項(xiàng)式及基本初等函數(shù)多元初等函數(shù):由多元多項(xiàng)式及基本初等函數(shù)經(jīng)過有限次的四則運(yùn)算和復(fù)合步驟所構(gòu)成的可經(jīng)過有限次的四則運(yùn)算和復(fù)合步驟所構(gòu)成的可用一個(gè)式子所表示的多元函數(shù)叫多元初等函數(shù)用一個(gè)式子所表示的多元函數(shù)叫多元初等函數(shù)一切多元初等函數(shù)在其定義區(qū)域內(nèi)是連續(xù)的一切多元
19、初等函數(shù)在其定義區(qū)域內(nèi)是連續(xù)的定義區(qū)域是指包含在定義域內(nèi)的區(qū)域或閉區(qū)域定義區(qū)域是指包含在定義域內(nèi)的區(qū)域或閉區(qū)域第28頁(yè)/共49頁(yè)第二十九頁(yè),編輯于星期一:二十點(diǎn) 十五分。例例.11lim00 xyxyyx 求求解解)11(11lim00 xyxyxyyx原式原式111lim00 xyyx.21 ).()(lim)()()()(lim00000PfPfPPfPfPPfPfPPPP 處連續(xù),于是處連續(xù),于是點(diǎn)點(diǎn)在在的定義域的內(nèi)點(diǎn),則的定義域的內(nèi)點(diǎn),則是是數(shù),且數(shù),且是初等函是初等函時(shí),如果時(shí),如果一般地,求一般地,求第29頁(yè)/共49頁(yè)第三十頁(yè),編輯于星期一:二十點(diǎn) 十五分。多元函數(shù)極限的概念多元函
20、數(shù)極限的概念多元函數(shù)連續(xù)的概念多元函數(shù)連續(xù)的概念閉區(qū)域上連續(xù)函數(shù)的性質(zhì)閉區(qū)域上連續(xù)函數(shù)的性質(zhì)(注意趨近方式的(注意趨近方式的任意性任意性)多元函數(shù)的定義多元函數(shù)的定義第30頁(yè)/共49頁(yè)第三十一頁(yè),編輯于星期一:二十點(diǎn) 十五分。 若若點(diǎn)點(diǎn)),(yx沿沿著著無無數(shù)數(shù)多多條條平平面面曲曲線線趨趨向向于于點(diǎn)點(diǎn)),(00yx時(shí)時(shí),函函數(shù)數(shù)),(yxf都都趨趨向向于于 A,能能否否斷斷定定Ayxfyxyx ),(lim),(),(00?思考題思考題第31頁(yè)/共49頁(yè)第三十二頁(yè),編輯于星期一:二十點(diǎn) 十五分。思考題解答思考題解答不能不能.例例,)(),(24223yxyxyxf )0 , 0(),(yx取取
21、,kxy 2442223)(),(xkxxkxkxxf 00 x但是但是 不存在不存在.),(lim)0,0(),(yxfyx原因?yàn)槿羧≡驗(yàn)槿羧?2yx 244262)(),(yyyyyyf .41第32頁(yè)/共49頁(yè)第三十三頁(yè),編輯于星期一:二十點(diǎn) 十五分。一、一、 填空題填空題: :1 1、 若若yxxyyxyxftan),(22 , ,則則),(tytxf= =_. .2 2、 若若xyyxyxf2),(22 , ,則則 )3, 2(f_; ; ), 1(xyf_. .3 3、 若若)0()(22 yyyxxyf, ,則則 )(xf_. .4 4、 若若22),(yxxyyxf , ,
22、則則 ),(yxf_. .函數(shù)函數(shù))1ln(4222yxyxz 的定義域是的定義域是_. .練練 習(xí)習(xí) 題題第33頁(yè)/共49頁(yè)第三十四頁(yè),編輯于星期一:二十點(diǎn) 十五分。 6 6、函數(shù)、函數(shù)yxz 的定義域是的定義域是_. . 7 7、函數(shù)、函數(shù)xyzarcsin 的定義域是的定義域是_. . 8 8、函數(shù)、函數(shù)xyxyz2222 的間斷點(diǎn)是的間斷點(diǎn)是_. .二二、 求求下下列列各各極極限限: :1 1、 xyxyyx42lim00 ;2 2、 xxyyxsinlim00;3 3、 22222200)()cos(1limyxyxyxyx . .第34頁(yè)/共49頁(yè)第三十五頁(yè),編輯于星期一:二十點(diǎn)
23、十五分。三、三、 證明:證明:0lim2200 yxxyyx. .四、四、 證明極限證明極限yxxyyx 11lim00不存在不存在 . .第35頁(yè)/共49頁(yè)第三十六頁(yè),編輯于星期一:二十點(diǎn) 十五分。一、一、 1 1、 ),(2yxft; 2 2、1213 , , ),(yxf; 3 3、 xx21 ; 4 4、 yyx 112; 5 5、 xyyxyx4, 10),(222 ; 6 6、 yxyxyx 2, 0, 0),(; 7 7、 xyxxyx , 0),( xyxxyx , 0),(; 8 8、 02),(2 xyyx. .二、二、1 1、41 ; 2 2、0 0; 3 3、 . .練習(xí)題答案練習(xí)題答案第36頁(yè)/共49頁(yè)第三十七頁(yè),編輯于星期一:二十點(diǎn) 十五分。不存在不存在.觀觀察察26300limyxyxyx ,263圖形圖形yxyxz 第37頁(yè)/共49頁(yè)第三十八頁(yè),編輯于星期一:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年云南建筑安全員C證考試(專職安全員)題庫(kù)附答案
- 2025湖南省安全員-C證考試(專職安全員)題庫(kù)附答案
- 2025年湖北省安全員B證考試題庫(kù)及答案
- 2025江蘇省安全員A證考試題庫(kù)及答案
- 貴陽(yáng)信息科技學(xué)院《環(huán)境工程CAD技術(shù)應(yīng)用實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025安徽省安全員《C證》考試題庫(kù)及答案
- 廣州幼兒師范高等??茖W(xué)?!都矣秒娖髟O(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年安徽省安全員知識(shí)題庫(kù)附答案
- 《d分析方法》課件
- 補(bǔ)條件和問題課件
- 2024年天津市中考語(yǔ)文試卷真題(含答案)
- 2024-2030年中國(guó)碳監(jiān)測(cè)行業(yè)市場(chǎng)運(yùn)營(yíng)態(tài)勢(shì)及發(fā)展前景研判報(bào)告
- 設(shè)備部年終總結(jié)
- 湘教版七年級(jí)上冊(cè)地理全冊(cè)教案(共30課時(shí))
- 江西省萍鄉(xiāng)市2022-2023學(xué)年高一年級(jí)上冊(cè)期末考試數(shù)學(xué)試題
- 第二單元自測(cè)卷(試題)2023-2024學(xué)年統(tǒng)編版語(yǔ)文四年級(jí)下冊(cè)
- 山西省呂梁市2023-2024學(xué)年高二上學(xué)期期末數(shù)學(xué)試題
- 如何訓(xùn)練寶寶獨(dú)立就寢
- 血常規(guī)報(bào)告單
- 設(shè)備部年度工作總結(jié)和來年計(jì)劃
- 寶寶大便觀察及護(hù)理課件
評(píng)論
0/150
提交評(píng)論