![2022屆貴州省貴陽市清華高考數(shù)學倒計時模擬卷含解析_第1頁](http://file4.renrendoc.com/view/e8a3c05c2947f3d8736bcfe7d7bdc849/e8a3c05c2947f3d8736bcfe7d7bdc8491.gif)
![2022屆貴州省貴陽市清華高考數(shù)學倒計時模擬卷含解析_第2頁](http://file4.renrendoc.com/view/e8a3c05c2947f3d8736bcfe7d7bdc849/e8a3c05c2947f3d8736bcfe7d7bdc8492.gif)
![2022屆貴州省貴陽市清華高考數(shù)學倒計時模擬卷含解析_第3頁](http://file4.renrendoc.com/view/e8a3c05c2947f3d8736bcfe7d7bdc849/e8a3c05c2947f3d8736bcfe7d7bdc8493.gif)
![2022屆貴州省貴陽市清華高考數(shù)學倒計時模擬卷含解析_第4頁](http://file4.renrendoc.com/view/e8a3c05c2947f3d8736bcfe7d7bdc849/e8a3c05c2947f3d8736bcfe7d7bdc8494.gif)
![2022屆貴州省貴陽市清華高考數(shù)學倒計時模擬卷含解析_第5頁](http://file4.renrendoc.com/view/e8a3c05c2947f3d8736bcfe7d7bdc849/e8a3c05c2947f3d8736bcfe7d7bdc8495.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡
2、一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1中,點在邊上,平分,若,則( )ABCD2若滿足約束條件則的最大值為( )A10B8C5D33已知,則a,b,c的大小關(guān)系為( )ABCD4已知集合,則為( )ABCD5中國古代用算籌來進行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個多位數(shù)時,像阿拉伯記數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個位、百位、方位用縱式表示,十位、千位、十萬位用橫式表示,則56846可用算籌表示為( )ABCD6已知向量,若,則( )ABCD7已知的展開式中第
3、項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為( )ABCD8函數(shù)的最小正周期是,則其圖象向左平移個單位長度后得到的函數(shù)的一條對稱軸是( )ABCD9是正四面體的面內(nèi)一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則( )ABCD10已知雙曲線 (a0,b0)的右焦點為F,若過點F且傾斜角為60的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是( )AB(1,2),CD11已知實數(shù)x,y滿足,則的最小值等于( )ABCD12曲線在點處的切線方程為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13如圖在三棱柱中,點為線段上一動點,則的最小值
4、為_.14已知為等比數(shù)列,是它的前項和.若,且與的等差中項為,則_.15已知,是平面向量,是單位向量.若,且,則的取值范圍是_.16若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調(diào)查高三學生數(shù)學成績與線上學習時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分數(shù)不少于1
5、20分分數(shù)不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關(guān)”;(2)按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設(shè)抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012
6、.7063.8415.0246.6357.87910.828(參考公式其中)18(12分)的內(nèi)角的對邊分別為,已知.(1)求的大??;(2)若,求面積的最大值.19(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數(shù)),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點求橢圓的標準方程;若時,求實數(shù);試問的值是否與的大小無關(guān),并證明你的結(jié)論20(12分)已知函數(shù).(1)當時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調(diào)性;(3)當時,若方程有兩個不相等的實數(shù)根,求證:.21(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸,且兩個坐標
7、系取相等的長度單位,建立極坐標系.(1)設(shè)直線l的極坐標方程為,若直線l與曲線C交于兩點AB,求AB的長;(2)設(shè)M、N是曲線C上的兩點,若,求面積的最大值.22(10分)已知都是各項不為零的數(shù)列,且滿足其中是數(shù)列的前項和,是公差為的等差數(shù)列(1)若數(shù)列是常數(shù)列,求數(shù)列的通項公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),求證:對任意的恒成立參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分
8、線定理可得,又,.故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎(chǔ)題.2D【解析】畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數(shù)為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標函數(shù)轉(zhuǎn)化為 的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.3D【解析】與中間值1比較,可用換底公式化為同底數(shù)對數(shù),再比較大小【詳解】,又,即,故選:D.【點睛】本題考查冪和
9、對數(shù)的大小比較,解題時能化為同底的化為同底數(shù)冪比較,或化為同底數(shù)對數(shù)比較,若是不同類型的數(shù),可借助中間值如0,1等比較4C【解析】分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.5B【解析】根據(jù)題意表示出各位上的數(shù)字所對應(yīng)的算籌即可得答案【詳解】解:根據(jù)題意可得,各個數(shù)碼的籌式需要縱橫相間,個位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對應(yīng)算籌表示為中的故選:【點睛】本題主要考查學生的合情推
10、理與演繹推理,屬于基礎(chǔ)題6A【解析】根據(jù)向量坐標運算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】, ,解得:故選:【點睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標運算;關(guān)鍵是明確若兩向量平行,則.7D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為考點:二項式系數(shù),二項式系數(shù)和8D【解析】由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得, 平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當時,.故選D.【點睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移
11、變換,屬基礎(chǔ)題.9B【解析】設(shè)正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設(shè)的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關(guān)系,進而求出正切值【詳解】由題意設(shè)四面體的棱長為,設(shè)為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,取的三等分點、如圖,則,所以、,由題意設(shè),和都是等邊三角形,為的中點,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,可得,此時,則,.故選:B.【點睛】考查線面所成
12、的角的求法,及正切值為定值時的情況,屬于中等題10A【解析】若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率根據(jù)這個結(jié)論可以求出雙曲線離心率的取值范圍【詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,離心率,故選:【點睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時要注意挖掘隱含條件11D【解析】設(shè),去絕對值,根據(jù)余弦函數(shù)的性質(zhì)即可求出【詳解】因為實數(shù),滿足,設(shè),恒成立,故則的最小值等于.故選:【點睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運算能力和轉(zhuǎn)化能力,意
13、在考查學生對這些知識的理解掌握水平12A【解析】將點代入解析式確定參數(shù)值,結(jié)合導數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數(shù)可得,由導數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】把 繞著進行旋轉(zhuǎn),當四點共面時,運用勾股定理即可求得的最小值.【詳解】將以為軸旋轉(zhuǎn)至與面在一個平面,展開圖如圖所示,若,三點共線時最小為,為直角三角形,故答案為:【點睛】本題考查了空間幾何體的翻折,平面內(nèi)兩點之
14、間線段最短,解直角三角形進行求解,考查了空間想象能力和計算能力,屬于中檔題.14【解析】設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,由于與的等差中項為,則,則,因此,.故答案為:.【點睛】本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計算能力,屬于基礎(chǔ)題.15【解析】先由題意設(shè)向量的坐標,再結(jié)合平面向量數(shù)量積的運算及不等式可得解【詳解】由是單位向量若,設(shè),則,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,故答案為:,【點睛】本題考查了平面向量數(shù)量積的坐標運算,意在考查學生對這些知識的理解掌握水平16
15、2025【解析】利用賦值法,結(jié)合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)填表見解析;有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關(guān)”(2)詳見解析期望;方差【解析】(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據(jù)分析知,計
16、算出期望與方差.【詳解】(1)分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時15419線上學習時間不足5小時101626合計252045有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關(guān)”.(2)由分層抽樣知,需要從不足120分的學生中抽取人,的可能取值為0,1,2,3,4,所以,的分布列:從全校不少于120分的學生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設(shè)從全校不少于120分的學生中隨機抽取20人,這些人中每周線上學習時間不少于5小時的人數(shù)為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數(shù)學期望與方差的計算問題,屬于基礎(chǔ)題.18(1
17、);(2).【解析】(1)利用正弦定理將邊化角,結(jié)合誘導公式可化簡邊角關(guān)系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得: ,又 ,即由得:(2)由余弦定理得:又(當且僅當時取等號) 即三角形面積的最大值為:【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理化簡邊角關(guān)系式、余弦定理解三角形、三角形面積公式應(yīng)用、基本不等式求積的最大值、誘導公式的應(yīng)用等知識,屬于常考題型.19(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應(yīng)用,在于直線交橢圓兩交點M,N的橫坐
18、標為,這樣代入橢圓方程,容易得到,從而解得;(3) 需討論斜率是否存在一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設(shè)直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關(guān)試題解析:(1),得:,橢圓方程為(2)當時,得:,于是當=時,于是,得到(3)當=時,由(2)知當時,設(shè)直線的斜率為,則直線MN:聯(lián)立橢圓方程有,=+=得綜上,為定值,與直線的傾斜角的大小無關(guān)考點:(1)待定系數(shù)求橢圓方程;(2)橢圓簡單的幾何性質(zhì);(3)直線與圓錐曲線20(1);(2)當時,在上是減函數(shù);當時,在上是增函數(shù);(3)證明見解
19、析.【解析】(1)當時,求得其導函數(shù) ,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導函數(shù),并得出導函數(shù)取得正負的區(qū)間,可得出函數(shù)的單調(diào)性; (3)當時,由(2)得的單調(diào)區(qū)間,以當方程有兩個不相等的實數(shù)根,不妨設(shè),且有,構(gòu)造函數(shù),分析其導函數(shù)的正負得出函數(shù)的單調(diào)性,得出其最值,所證的不等式可得證.【詳解】(1)當時,所以 ,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,令,得,所以當時,當時,所以在上是減函數(shù),在上是增函數(shù);(3)當時,由(2)得在上單調(diào)遞減,在單調(diào)遞增,所以,且時,當時,所以當方程有兩個不相等的實數(shù)根,不妨設(shè),且有,構(gòu)造函數(shù),則,當時,所以,在上單調(diào)遞減,且,由 ,在上單調(diào)遞增, .所以.【點睛】本題考查運用導函數(shù)求函數(shù)在某點的切線方程,討論函數(shù)的單調(diào)性,以及證明不等式,關(guān)鍵在于構(gòu)造適當?shù)暮瘮?shù),得出其導函數(shù)的正負,得出所構(gòu)造的函數(shù)的單調(diào)性,屬于難度題.21(1);(2)1.【解析】(1)利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 度沙子運輸合同范本
- 工地施工鋼筋班組承包合同
- 游泳館勞務(wù)承包合同常用范本
- 門面租賃合同簡易范本
- 銷售人員提成合同
- 物業(yè)管理的合作與協(xié)同
- 外籍人員雇傭合同
- 甲基轉(zhuǎn)移酶SUV39H2促進前列腺癌增殖、侵襲和轉(zhuǎn)移的機制研究
- 家具定制合約三篇
- 考慮兩類沖擊的退化系統(tǒng)的預防維修策略研究
- 人工智能大模型
- 極簡統(tǒng)計學(中文版)
- 2024年資格考試-對外漢語教師資格證筆試參考題庫含答案
- 2024年4月自考02382管理信息系統(tǒng)答案及評分參考
- (蘇版)初三化學上冊:第2單元課題1空氣
- 2023年12月廣東珠海市軌道交通局公開招聘工作人員1人筆試近6年高頻考題難、易錯點薈萃答案帶詳解附后
- 腹腔鏡腎上腺腫瘤切除術(shù)查房護理課件
- 專題23平拋運動臨界問題相遇問題類平拋運和斜拋運動
- 超聲科醫(yī)德醫(yī)風制度內(nèi)容
- 高三開學收心班會課件
- 蒸汽換算計算表
評論
0/150
提交評論