版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、高一數(shù)學(xué)解題基本方法有哪些數(shù)學(xué)的重要性不言而喻,精品小編準(zhǔn)備了高一數(shù)學(xué)解題基本方法有哪些,希望你喜歡。一、配方法配方法是對數(shù)學(xué)式子進(jìn)行一種定向變形(配成完全平方)的技巧,通過配方找到已知和未知的聯(lián)系,從而化繁為簡。何時配方,需要我們適當(dāng)預(yù)測,并且合理運(yùn)用裂項與添項、配與湊的技巧,從而完成配方。有時也將其稱為湊配法。最常見的配方是進(jìn)行恒等變形,使數(shù)學(xué)式子出現(xiàn)完全平方。它主要適用于:已知或者未知中含有二次方程、二次不等式、二次函數(shù)、二次代數(shù)式的討論與求解,或者缺xy項的二次曲線的平移變換等問題。二、換元法解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法。換元的
2、實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來?;蛘咦?yōu)槭煜さ男问?,把?fù)雜的計算第1頁和推證簡化。它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。三、待定系數(shù)法要確定變量間的函數(shù)關(guān)系,設(shè)出某些未知系數(shù),然后根據(jù)所給條件來確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項式恒等,
3、也就是利用了多項式f(x)g(x)的充要條件是:對于一個任意的a值,都有f(a)g(a);或者兩個多項式各同類項的系數(shù)對應(yīng)相等。待定系數(shù)法解題的關(guān)鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學(xué)問題,通過引入一些待定的系數(shù),轉(zhuǎn)化為方程組來解決,要判斷一個問題是否用待定系數(shù)法求解,主要是看所求解的數(shù)學(xué)問題是否具有某種確定的數(shù)學(xué)表達(dá)式,如果具有,就可以用待定系數(shù)法求解。例如分解因式、拆分分式、數(shù)列求和、求函數(shù)式、求復(fù)數(shù)、解析幾何中求曲線方程等,這些問題都具有確定的數(shù)學(xué)表達(dá)形式,所以都可以用待定系數(shù)法求解。使用待定系數(shù)法,它解題的基本步驟是:第一步,確定所求問題含有待定
4、系數(shù)的解析式;第二步,根據(jù)恒等的條件,列出一組含待定系數(shù)的方程;第2頁第三步,解方程組或者消去待定系數(shù),從而使問題得到解決。如何列出一組含待定系數(shù)的方程,主要從以下幾方面著手分析:利用對應(yīng)系數(shù)相等列方程;由恒等的概念用數(shù)值代入法列方程;利用定義本身的屬性列方程;利用幾何條件列方程。比如在求圓錐曲線的方程時,我們可以用待定系數(shù)法求方程:首先設(shè)所求方程的形式,其中含有待定的系數(shù);再把幾何條件轉(zhuǎn)化為含所求方程未知系數(shù)的方程或方程組;最后解所得的方程或方程組求出未知的系數(shù),并把求出的系數(shù)代入已經(jīng)明確的方程形式,得到所求圓錐曲線的方程。四、定義法所謂定義法,就是直接用數(shù)學(xué)定義解題。數(shù)學(xué)中的定理、公式、性
5、質(zhì)和法則等,都是由定義和公理推演出來。定義是揭示概念內(nèi)涵的邏輯方法,它通過指出概念所反映的事物的本質(zhì)屬性來明確概念。定義是千百次實踐后的必然結(jié)果,它科學(xué)地反映和揭示了客觀世界的事物的本質(zhì)特點(diǎn)。簡單地說,定義是基本概念對數(shù)學(xué)實體的高度抽象。用定義法解題,是最直接的方法,本講讓我們回到定義中去。第3頁五、數(shù)學(xué)歸納法歸納是一種有特殊事例導(dǎo)出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據(jù)一類事物中的部分對象具有的共同性質(zhì),推斷該類事物全體都具有的性質(zhì),這種推理方法,在數(shù)學(xué)推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對象后歸納得出結(jié)論來。數(shù)學(xué)歸納法是用
6、來證明某些與自然數(shù)有關(guān)的數(shù)學(xué)命題的一種推理方法,在解數(shù)學(xué)題中有著廣泛的應(yīng)用。它是一個遞推的數(shù)學(xué)論證方法,論證的第一步是證明命題在n=1(或n)時成立,這是遞推的基礎(chǔ);第二步是假設(shè)在n=k時命題成立,再證明n=k+1時命題也成立,這是無限遞推下去的理論依據(jù),它判斷命題的正確性能否由特殊推廣到一般,實際上它使命題的正確性突破了有限,達(dá)到無限。這兩個步驟密切相關(guān),缺一不可,完成了這兩步,就可以斷定對任何自然數(shù)(或nn且nN)結(jié)論都正確。由這兩步可以看出,數(shù)學(xué)歸納法是由遞推實現(xiàn)歸納的,屬于完全歸納。運(yùn)用數(shù)學(xué)歸納法證明問題時,關(guān)鍵是n=k+1時命題成立的推證,此步證明要具有目標(biāo)意識,注意與最終要達(dá)到的解
7、題目標(biāo)進(jìn)行分析比較,以此確定和調(diào)控解題的方向,使差異逐步減小,最終實現(xiàn)目標(biāo)完成解題。運(yùn)用數(shù)學(xué)歸納法,可以證明下列問題:與自然數(shù)n有關(guān)的恒第4頁等式、代數(shù)不等式、三角不等式、數(shù)列問題、幾何問題、整除性問題等等。六、參數(shù)法參數(shù)法是指在解題過程中,通過適當(dāng)引入一些與題目研究的數(shù)學(xué)對象發(fā)生聯(lián)系的新變量(參數(shù)),以此作為媒介,再進(jìn)行分析和綜合,從而解決問題。直線與二次曲線的參數(shù)方程都是用參數(shù)法解題的例證。換元法也是引入?yún)?shù)的典型例子。辨證唯物論肯定了事物之間的聯(lián)系是無窮的,聯(lián)系的方式是豐富多采的,科學(xué)的任務(wù)就是要揭示事物之間的內(nèi)在聯(lián)系,從而發(fā)現(xiàn)事物的變化規(guī)律。參數(shù)的作用就是刻畫事物的變化狀態(tài),揭示變化因
8、素之間的內(nèi)在聯(lián)系。參數(shù)體現(xiàn)了近代數(shù)學(xué)中運(yùn)動與變化的思想,其觀點(diǎn)已經(jīng)滲透到中學(xué)數(shù)學(xué)的各個分支。運(yùn)用參數(shù)法解題已經(jīng)比較普遍。參數(shù)法解題的關(guān)鍵是恰到好處地引進(jìn)參數(shù),溝通已知和未知之間的內(nèi)在聯(lián)系,利用參數(shù)提供的信息,順利地解答問題。七、反證法與前面所講的方法不同,反證法是屬于間接證明法一類,是從反面的角度思考問題的證明方法,即:肯定題設(shè)而否定結(jié)論,從而導(dǎo)出矛盾推理而得。法國數(shù)學(xué)家阿達(dá)瑪(Hadamard)對反證法的實質(zhì)作過概括:若肯定定理的假設(shè)而否定其結(jié)論,就會導(dǎo)致矛盾。具體地講,反證法就是從否定命題的結(jié)第5頁論入手,并把對命題結(jié)論的否定作為推理的已知條件,進(jìn)行正確的邏輯推理,使之得到與已知條件、已知
9、公理、定理、法則或者已經(jīng)證明為正確的命題等相矛,矛盾的原因是假設(shè)不成立,所以肯定了命題的結(jié)論,從而使命題獲得了證明。反證法所依據(jù)的是邏輯思維規(guī)律中的矛盾律和排中律。在同一思維過程中,兩個互相矛盾的判斷不能同時都為真,至少有一個是假的,這就是邏輯思維中的矛盾律兩個互相矛盾的判斷不能同時都假,簡單地說A或者非A,這就是邏輯思維中的排中律。反證法在其證明過程中,得到矛盾的判斷,根據(jù)矛盾律,這些矛盾的判斷不能同時為真,必有一假,而已知條件、已知公理、定理、法則或者已經(jīng)證明為正確的命題都是真的,所以否定的結(jié)論必為假。再根據(jù)排中律,結(jié)論與否定的結(jié)論這一對立的互相否定的判斷不能同時為假,必有一真,于是我們得
10、到原結(jié)論必為真。所以反證法是以邏輯思維的基本規(guī)律和理論為依據(jù)的,反證法是可信的。反證法的證題模式可以簡要的概括我為否定推理否定。即從否定結(jié)論開始,經(jīng)過正確無誤的推理導(dǎo)致邏輯矛盾,達(dá)到新的否定,可以認(rèn)為反證法的基本思想就是否定之否定。應(yīng)用反證法證明的主要三步是:否定結(jié)論推導(dǎo)出矛盾結(jié)論成立。實施的具體步驟是:第一步,反設(shè):作出與求證結(jié)論相反的假設(shè);第6頁第二步,歸謬:將反設(shè)作為條件,并由此通過一系列的正確推理導(dǎo)出矛盾;第三步,結(jié)論:說明反設(shè)不成立,從而肯定原命題成立。在應(yīng)用反證法證題時,一定要用到反設(shè)進(jìn)行推理,否則就不是反證法。用反證法證題時,如果欲證明的命題的方面情況只有一種,那么只要將這種情況駁倒了就可以,這種反證法又叫歸謬法如果結(jié)論的方面情況有多種,那么必須將所有的反面情況一一駁倒,才能推斷原結(jié)論成立,這種
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村預(yù)留地承包合同范例
- 低價接高價出售合同范例
- 2024全新協(xié)議離婚財產(chǎn)放棄下載版合同模板3篇
- 探索幾何圖形
- 四年級新征程
- 2024年IC卡生產(chǎn)供應(yīng)合同3篇
- 2024年短期電工服務(wù)協(xié)議條款版B版
- 2024年簡明勞務(wù)承包協(xié)議范例版B版
- 直播知識策劃的直播間建設(shè)與裝修
- 年產(chǎn)5000噸高壓支柱及2萬片瓷復(fù)合絕緣子技改項目可行性研究報告寫作模板-備案審批
- 地源熱泵維修規(guī)程
- 雙塊式無砟軌道道床板裂紋成因分析應(yīng)對措施
- 安全生產(chǎn)領(lǐng)域刑事犯罪-兩高司法解釋PPT課件
- 全級老年大學(xué)星級學(xué)校達(dá)標(biāo)評價細(xì)則
- 土地增值稅清算審核指南
- 死亡通知書模板
- 最新全球4G頻段精編版
- 真速通信密拍暗訪取證系統(tǒng)分冊
- 基于閱讀文本的寫作課堂觀察記錄表
- 2018年建設(shè)工程質(zhì)量檢測企業(yè)組織架構(gòu)、部門職能、商業(yè)模式、行業(yè)現(xiàn)狀研究
- 失業(yè)保險金申領(lǐng)表_11979
評論
0/150
提交評論