




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、正余弦函數(shù)的圖像和性質(zhì)高中數(shù)學(xué)組 歐錦州正弦函數(shù).余弦函數(shù)的圖象和性質(zhì)-11-1-余弦函數(shù)的圖象-11-1-11-1-(1) 等分作法:(2) 作余弦線(3) 豎立、平移(4) 連線正弦、余弦函數(shù)y=sinx,y=cosx,xR的圖象24-3-99正弦函數(shù).余弦函數(shù)的圖象和性質(zhì)-1-1因為終邊相同的角的三角函數(shù)值相同,所以y=sinx的圖象在, 與y=sinx,x0,2的圖象相同-1-1正弦函數(shù)的圖象余弦函數(shù)的圖象因為終邊相同的角的三角函數(shù)值相同,所以y=cosx的圖象在, 與y=cosx,x0,2的圖象相同正弦曲線余弦曲線o1-1 可由 向左平移 個單位得到.正弦函數(shù).余弦函數(shù)的圖象和性質(zhì)與
2、x軸的交點(diǎn)圖象的最高點(diǎn)圖象的最低點(diǎn)與x軸的交點(diǎn)圖象的最高點(diǎn)圖象的最低點(diǎn)圖象中關(guān)鍵點(diǎn)簡圖作法(五點(diǎn)作圖法)(1) 列表(列出對圖象形狀起關(guān)鍵作用的五點(diǎn)坐標(biāo))(2) 描點(diǎn)(定出五個關(guān)鍵點(diǎn))(3) 連線(用光滑的曲線順次連結(jié)五個點(diǎn))一、定義域正弦函數(shù)、余弦函數(shù)的定義域都是實數(shù)集R或(,),分別記作:ysinx,xRycosx,xR二、值域因為正弦線、余弦線的長度小于或等于單位圓的半徑的長度,所以sinx1,cosx1,即1sinx1,1cosx1也就是說,正弦函數(shù)、余弦函數(shù)的值域都是1,1二、值域其中正弦函數(shù)y=sinx,xR時,取得最大值1當(dāng)且僅當(dāng)當(dāng)且僅當(dāng)時,取得最小值1二、值域而余弦函數(shù)ycos
3、x,xR當(dāng)且僅當(dāng)x2k,kZ時,取得最大值1當(dāng)且僅當(dāng)x(2k1),kZ時,取得最小值1誘導(dǎo)公式sin(x+2) =sinx,的幾何意義xyoXX+2XX+2正弦函數(shù)值是按照一定規(guī)律不斷重復(fù)地出現(xiàn)的oyx48xoy612三、周期性定義:對于函數(shù)f(x),如果存在一個非零常數(shù),使得當(dāng)x取定義域內(nèi)的每一個值時,都有f(x)f(x+T),那么函數(shù)f(x)就叫做周期函數(shù)非零常數(shù)T叫做這個函數(shù)的周期三、周期性 對于一個周期函數(shù)f(x),如果在它的所有正周期中存在一個最小的正數(shù),那么這個最小的正數(shù)就叫做f(x)的最小正周期 正弦函數(shù)、余弦函數(shù)都是周期函數(shù),2k(kZ且k0)是它們的周期,最小正周期是2.xo
4、y41268210三、周期性 正弦、余弦函數(shù)的奇偶性、單調(diào)性 sin(-x)= - sinx (xR) y=sinx (xR)x6yo-12345-2-3-41是奇函數(shù)x6o-12345-2-3-41ycos(-x)= cosx (xR) y=cosx (xR)是偶函數(shù)定義域關(guān)于原點(diǎn)對稱 四、正弦、余弦函數(shù)的奇偶性 正弦、余弦函數(shù)的奇偶性、單調(diào)性 五、正弦函數(shù)的單調(diào)性 y=sinx (xR)增區(qū)間為 , 其值從-1增至1xyo-1234-2-31 x sinx 0 -1 0 1 0 -1減區(qū)間為 , 其值從 1減至-1? +2k, +2k,kZ +2k, +2k,kZ 正弦、余弦函數(shù)的奇偶性、
5、單調(diào)性 余弦函數(shù)的單調(diào)性 y=cosx (xR) x cosx - 0 -1 0 1 0 -1增區(qū)間為 其值從-1增至1 +2k, 2k,kZ減區(qū)間為 , 其值從 1減至-12k, 2k + , kZyxo-1234-2-31例1:求使下列函數(shù)取得最大值的自變量x的集合,并說出最大值是什么。(1)y=cosx1 ,xR (2)y=sin2x ,xR(1)分析:使函數(shù)y=cosx1 ,xR 取得最大值的x的集合 就是使函數(shù)y=cosx ,xR取得最大值的x的集合。 解:當(dāng)x=2k,kZ時,cosx取最大值1,這時函數(shù) y=cosx1取最大值為1+1=2 使函數(shù) y=cosx1 取最大值的x的集合為 x|x=2k,kZ,最大值為2。(2)解:令z=2x,則zR函數(shù)變?yōu)閥=sinz ,zR,且使函數(shù) y=sinz ,zR,取最大值的z的集合是使函數(shù)y=sin2x, xR取得最大值的x的集合是: 此時函數(shù)的最大值為1。O234-2yx例2、求使 的x的集合。例2求下列函數(shù)的定義域:(1)y1+ (2)yR-1,1奇函數(shù)偶函數(shù)課時小結(jié)定義域值域奇偶性周期性單調(diào)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國鋁合金防火門窗市場運(yùn)行格局規(guī)劃研究報告
- 2025-2030年中國透閃石行業(yè)運(yùn)營規(guī)模與發(fā)展前景分析報告
- 2025-2030年中國蘋果行業(yè)現(xiàn)狀調(diào)研發(fā)展戰(zhàn)略規(guī)劃研究報告
- 2025-2030年中國背光模組行業(yè)運(yùn)行狀況及發(fā)展趨勢分析報告
- 2025-2030年中國硫酸氧釩行業(yè)風(fēng)險評估規(guī)劃研究報告
- 2025-2030年中國盆花市場十三五規(guī)劃及發(fā)展前景分析報告
- 2025-2030年中國男士化妝品市場規(guī)模分析及發(fā)展建議研究報告
- 辦房產(chǎn)證合同范本寫
- 東麗區(qū)勞務(wù)外包合同范本
- 公司之間廣告合同范例
- 人音版音樂一年級上冊第3課《國旗國旗真美麗》說課稿
- 腸系膜上動脈栓塞護(hù)理查房課件
- GB/T 44255-2024土方機(jī)械純電動液壓挖掘機(jī)能量消耗量試驗方法
- DL∕T 1785-2017 電力設(shè)備X射線數(shù)字成像檢測技術(shù)導(dǎo)則
- 山東財經(jīng)大學(xué)《大學(xué)英語》2022-2023學(xué)年期末試卷
- 融合教育完整版本
- 產(chǎn)品研發(fā)指導(dǎo)專家聘用協(xié)議書
- JT-T-1210.1-2018公路瀝青混合料用融冰雪材料第1部分:相變材料
- 2024年晉中職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫完整參考答案
- DL-T5493-2014電力工程基樁檢測技術(shù)規(guī)程
- 2024年03月廣東佛山市禪城區(qū)教育系統(tǒng)招考聘用中小學(xué)教師120人筆試歷年典型題及考點(diǎn)剖析附帶答案含詳解
評論
0/150
提交評論